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LINEAR PROGRAMMING

SIMPLEX-LIKE SOLUTION TECHNIQUE
(EODGE FOLLOWER}

Definitions:
Parameaters

A Mutation Geometry based Tinear programming problem { MGELP )
consists of N vartables and M constralnts, In this algorithm
description, the symbol " < " means 1ess than or egual. The

symbol " » * means greater than or equal.

Constratnts

Constraints are numbered from 1 to M. In MGLP, the M
coordinate constralints ( x » 0 etc. ) are treated just 1ike any
other constraint. They are numbered 1 to W. Therefore, since
the f1rst N constraints are the coordinate constraints, thers
areg aiways more constraints than variaples. For a maximization
problem, all constraitnts are converted to the ¢ type
constraint ( negative RHSs are allowed). For a minimizatian
type problem, all constraints are converted to the » type
constraint ( agaln, negative RH3S are allowed j. For brevity,
how To tTreat equality constralints (4 trivial matter - but one
that reguires a great deal of explanaticn), 13 not discussed
here. Agalin, 1t 1s important to understand that coordinate
constraints are treated just T1ke any other constraint. Note
aise, that there are no such thindgs as sTack or artificial
varfables in MGLP - ever.

In tha Tllustrations (E£X-1 thirough EX-14), the constraint
rnumbers are near the sma’il arrows and have & small circle drawn
around them.

[NDEX

The INOEX 15 & 71st of the N constraints whose simultaneous
splution defines the current solution vector. The INDEX is
similar Lo the Simplex basis. The matin difference 15 that 1n
Simplex, varfables enter and leave the pasis while 1n MGLP,
constraints enter and leave the INDEX. These constraints may
be coordinate constraints or exterpal constraints,
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GAMMA VECTORS

A system of N eguations {(constraints treated as eguations) may
be written:

=¥ —
Where A and X are vector quantities. Each equation 1n tThe
above system may be writtan:

— —
a * x = b

Each eguation defines a plane. The vector guantity —§+ is The
normal to this plane. A system of N gguations defines a point
inm N space. A system of N-71 equations defines a 1imne of
intersecticn Tnm N space. The vector cross product of M-1
normals, 15 perpendicular to the normals and has the direction
of the 11ne of intersection of the N-1 planes. Consaguently,
by taking the vector cross product of M-1 normals
{constraints), the edges of the convex hull can be generated.
This wvector cross product 15 called the GAMMA vector 1n
Mutation Geometry and 15 the cardinal principal of Mutation
CGeometry based l1near programming.

in this paper, GAMMA vectors are calculated using column
cofactars. There are many faster ways to calculate them. The
simple methods ¥17iustrated 1n this description would not be
used 1n & practical Tmplementation.

T - MALUES

T-values are The parametric dlistance between hyperpianes
(convex hull vertices), along the direction of the GAMMA
vectoers. During each Tteration, a T-value 1s computed far each
constraint (Including of course the N coordinate constraints).
The corresponding constraint that gave the minimum non zZero
T-value wWi1ll be the ¢losest hyperplane. A T-value of 2ero
defines a degenerate constralnt system, It w111 occur when
more tnan N constraints pass through the same peint. How to
handle such a condition 15 a trivial matter whith for bravity
will not be afscussed nere. It should be pointed out, howewver,
that the resolutien of a degeneracy 15 & aeterministic process
- and continual cycling 15 not possibie., Also, the resolution
of a degeneracy dees notl Involve perturbing the constraint
matrix Tn any way.
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A T-value 15 computed for each of the M constraints which are
not 1n the INDEX. The formula for computing T-values 13 giwven
below. The derivation of this formula 15 gfven elsewhere 1n
this papor.

T = | b, - a, * | I a. * 4 i
L & & L= F
Where 1 = T 5 2 45 3 4 -w. M CORSEralnLs
b, = the right hand side of constraint 1
[ =3
7% = the coefficient vector of constraint 1
_Er = the current solutlion vector
g= = the current GAMMA vector
* = The vector scalar product

The minimum T-value 1% used each JTteration to calculale a new
sglution vedctLor. The eguation used Tto calculate the naw
sclution wvector is given below:

- S
wherea 7? = the new sojution vector
?f = The current sclution vectar
T = the minltmum T-value found above
& = the current GAMMA vectar

A more detajled explanation of T-value computation 15 given
pelow 1n the algarithm description area.

The beginning:
SOLUTEGON ALGORITHM

There are several MGLP technigues for finding & feasiple
starting selution. Since they all utiiize technifgques discussed
thus far, and the description of them would pe very long, for
hrevity, we start the discussicn of the MELP aigorithm with a
very simple starting solution technigue that would not be used
in practice but will 13lustrate the principles Involved,

In describing the MGLP algorithm I will refer to the sheets
lTabhelaed EX-1 through EX-14. This 15 only a two varilable
problem but I beltieve the "graphlc® will be 1nvaluable in
describing the actien (at least for me) !

We start the description with & statement of the probiem - a
minimization problem with Two varfables and nine (two

coordinate pius seven external) constraints (see page £X-71 of
the 1Ttustrated exampla) .
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STARTING POI
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In erder To find a feasibie starting sclution, we have to plck
& pofnt that satisftes all constiraints. For a pure
minimization problem, such as thils example, that point 1ies
a4long the axfs and can be found by selecting the largest
T-vaiue. In this example, that poeint 15 &4t the 1ntersection of
constraints Z and 3. Therefore, the constraint leaving the
INDEX 15 constralnt number 1, and the constralnt entering the
INDEX 15 constraint number 3. Using the vector equation:

1
—
L
-
o

We generate a starting vector which satisfies a1l constraints

{see page EX-2). The Initt1al objective function value 15
computed from:

i

il
-
%
Lo
[ =
[ Y

We now have a feasible starting point and all the information
we need to start the solution process. This information 1s
repeated below and fs also shown on page EX-2.

Starting solutfon vecter: r = (7 0}

starting INDEX: INDEX = 2 , 3

starting 2: z 2 7
ITERATION 1

The first thing we must do 15 to select the HN-1 constralnits
from the N constraints in the INDEX tec form the GAMMA vectors,
The general rulis 15:

1) Always retain the JTatest constraint to enter the INDEX
witen computing GAMMA vectors

2y Calculate the M-1 GAMMA vectors by 1ignoring 1n turn
gach of the remaining N-1 constraints In the INDEX

In our exampie, N = 2. Therefore, there will oniy be one GAMMA
yactor. Since constraint 3 was the 1ast To enter the INDEX, wa
fgnore constraint 2 and calculate the column cofactors of the
left nand sTde to get the GAMMA vector:

Constraint 3: 1 7 } 7

GAMMA vector: g = X7 =1 2
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We now have to test thls GAMMA vector to ensure that 1t 1s
going 1n the correct direction. [f the GAMMA vecior 15 not
peinted in the correct dlirection, 1T must be multiplied by -1
to change 1ts direction. For minimization type problems, the
following condition must hold; THE SCALAR PRODUCT OF THE GAMMA
VECTOR AND THE LEFT HAND SIDE OF THE CONSTRAINT LEFT OUT OF THE
INDEX WHEN THE GAMMA VECTOR WAS COMPUTED, MUST BE GREATER THAN
ZERO., Since constraint number 2 was left out 1n coemputing this
GAMMA vecltor, the following condition must nola:

— »
{ GAMMA wvector g ) * { constralini number 2 ) > O 7
T ) =0 3 i d 13 = =1

Since thi1s GAMMA vector fafls the Test, Tt must be multipliied
by -1 1o change 1ts direction. The correct GAMMA vector is
then:

GAMMA vector @ = ( =7 1)

Notice that this GAMMA vector 11es along constraint number 3
(page EX-4).

A GAMMA vector test value of Zero Thndfcates that the canstraint
hyperplanes are orthogonal. In that situation, this test
cannot be used To determine proper GAMMA vector directlon.
There are several other trivial ways to test for proper GAMMA
yactor orfentation, but for the sake of brevity, they Will not
be discussed here.

We naxt compute the parametr1c distance to all constraint
hyperplanas that are not 1n the INDEX via the T-value equation.
The T-value for constralint number 1 915 Computed Delow.

INDEX = 7 = 3
bt
Solution wector L = £ o3
—
GAMMA wvector g = {. = 1}
T P * 2= T e
L . ( b - a re A \ g

ﬁ = (0=07 ) * ¢F 03001 @) % (=T 1)) = 1.000
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I refer you to page EX-3, EX-4, anda EX-5 for the complete
picture. Motice tnat constraimt number 4 yielded the smallest
T-value greater than zero. Thet consiraint wilil be the next
constraint entering the INDEX. Also notice that constraint
numoer 2 will be the constraint leaving the INDEX. At the
bottom of page EX-3 you Wwi1ll notice that the solution vector
has been updated with the vector eguation;:

— — =y
i = L + T g

o £ T G ) * B.250 ( =7 13

(1]

£ 5.250 0.250 3

Also notice that the objective function valueg has become
smaller thus indicating that we are going in the right
direction. We have now updated ali wvariables and are ready to

proceed to the next Tteration. Page EX-5 summarizes the
sttuation at the end of fteration 1.

ITERATION 2

Iteration 2 {(see EX-6 through EX-8) follows the Same format as
1teration 1;

Compute a GAMMA vector

Test {and correct 1f necessaryd the GAMMA vector
girection

Compute the T-values for all constraints net 1n the INDEX
using the T-value eguation

Select the minimum T-valua
—
Update the solution vector using the r vector eguation

Calculate the new 2 value using the cbjective funciiaon
vector and the new solution vector

Test the new 2 wvalue against the old 2 value to sae
if the optimum has been reachad. If 50, stop.

Update the INDEX
Continue on To the next Iteration
This process 15 repeated uniil the optimum 15 found. In the

wWworked example, the optimum i3 found at fteration 4 (page EX-13
and EX-14}).
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HEH IR RAEN AN AE NEW TTERATION woessa ks amasnss

ITERATION COUNT

GAMMA VECTOR NUMBER

* GAMMA MATRIX

¥ GAMMA MATRIX

GAMMA VECTOR g

GAMMA VECTOR TEST

GAMMA VECTOR g

GRADIENT

CONMSTRAINT
3+ 33 CONSTRAINT
COMSTRAINT
CONSTRAINT
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CONSTRAINT
CONSTRAINT

INCOMING CONSTRAINT

OUTGOING CONSTRAINT

NEW INDEX
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e NEW r VYECTOR
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wkdkkkkkkwAkkwd MNEW [TERATION ®rewwwwkwwhknksd

ITERATION COUNT = Z

GAMMA VECTOR NUMBER = 1

GAMMA MATRIX = 2.0 6.0

GAMMA MATRIX = 2.0 6.0

GAMMA VECTOR g = £.0 =20

EAMMA VYECTOR TEST = -8.0

GAMMA VECTOR g = -6.0 2.0

GRADIENT 2 -4.0

CONSTRAINT NUMBER = 1 T VALUE = 0.875
CONSTRAINT NUMEER = 2 T VALUE = 1 P
CONSTRAINT NUMBER = 2 T VALUE = 0.250 (min}
CONSTRAINT NUMBER = & T YALUE = D.275
CONSTRAINT NUMBER = 7 T VALUE = 0.500
CONSTRAINT NUMBER = 8 T VALUE = 0.6E25%
CONSTRAINT NUMBER = 9 T VALUE = 0.750
INCOMING CONSTRAINT = 5

CUTGOING CONSTRAINT = 3

NWEW INDEX 2 4 5

NEW r VECTOR = 3.750 0.750

NEW OBJECTIVE FUNCTION VALUE = 4.50
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ITERATION COUNT

GAMMA VECTOR NUMBER
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CONSTRAINT
CONSTRAINT
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CPU TIME = 0:00:00.14
NUMBER OF ITERATIONS = 4

INDEX CONSTRAINT NUMBER = 5

INDEX CONSTRAINT NUMBER = &

OPTIMUM r VECTOR = 2.50 1.50
DEJECTIVE FUNCTIDN VALUE = 4.0

MINIMUM SLACK = -6.0

MAXIMUM SLACK
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