Chap. 1

Learning about Vectors and their Uses.

1. A vector can be represented by a segment of a straight
line. It has 2 magnitude and a direction. Veloecity, for ex-
ample, is a vector in that it involves a magnitude, its speed,
and a direction. Other wvectors, such as acceleration, force,
stress, electric current, etc have two parts: a magnitude
and direction., A scalar, on the other hana, has magnitude
only. Speed,the magnitude of a wvelocity, is a scalar. Some
other scalars are: temperature, calories, or the quantity of
any thing, numbera, as %, 4, 5 , etc. Linear programming is
involved largely with wvectors.

&3 fepresentation of a vector. Any vector as a may be
graphically represented by an arrow:

A
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¢ Fig. 1
Point 0 is its origin and A is its terminus.
3. Fegative Vectors. The vector having the same magnitude

a5 & but the opposite direction is the negative of vector a.
They are correctly represented below:

/
Fig. 2

These wvectors do not have to have the same origin., All vectors,
whatever their origins, having the same magnitude and sense
are equal vecltors,

4. Unit Vectors. The vector having the same sense as vector
a and a pagnitude 1 ,is 2 unit vector in the directiom of a
and we write,it as a™., We may write the vector a as:

1l

{ 1§ 2 = aja

where a, is the magnitude of wector a. If our vector is a
compnsitg ore 28 (b + e ) it {8 written:

(2) (B+c) = (becly(bee)t

5 Heciprocal Vectotrs. The wector with the same sense as
vector a with a magnitude equal to the reciprocal of that of
a is the reciproecal of =, It is written:

1
g e a /e,
&, An Extended Meaning of Equality

Consider two vecters a and b diasgramed below, We assume



that a starts from point U and that its terminus is at point
B and that b starts from point B the terminus of = and has
its terminus at point €. We can go from O directly to C or
we can go from © to € by going to B then to . In ©oth cases
we arrive at the same point €. Let us cgll the vector from
C to C small ¢, We may then write:

g ol e = & + b.
This equation means the going along vector c is the same

as the going along vector a added toc the going along vector
b for in esch case we arrive at the same point C.

Fig., 3

Fquation ( 1 ) may be written :

Thie is obwicus from Fig. 3. Our eguations, without other-
wige stated, will have this extended meaning of the eguality
gign = .

o Orthonormal Tectors. The grthonormal wectior to vector =
iz written:

L
a

and is sketched below.

Fig. 4

It is equzl to a in magnitude ané makes a QDD angle with vec-
tor a and points in a counter clock wise sense., Cme can write

]

The orthonormel of vector ( 2 + b }

-

(2} (a + 3) = 8 + b

fa + b

and gne may alsg write:

{5} (&+E}E={a+b}ﬁ



Equation { 2 ) means that a composite orthonormal wvector
may be decomposéd into its constituents as orthonormals, or
that a sum of orthonormals may be grouped into & single ortho-
normal.

We shall not take time here to prove this faet but will
illustrate it with some examples which will not prove it but
will give credence to the fact. For simplicity we go with
two vectors a and b in the plane.

o
Fig- 5‘

We draw the orthonormel (a + b } te (a2 + b ) and
ponsider the new configuration as a rigia rotation thru 90
degreea of the original configuration and a rigid reotation
conserves angles between the constituents; thus

-

Lr
(4 ) T v B = {mow
which is the same as equation ( 2 )

If one multiplies 2 vector a by & scalar m the result
is a wvector with the same direction aeg a. It may be written

22 =) B
{5 ) P = na CL___#EL_nq—ﬂgfgjzﬁ

Fig. 6 iz the sketch for n greater than 1. When n is less
than 1 point B will fall between O and A. when n is negative
point B will fall to the left of Q.

Suppose we apply our operator W twice to vector a:
L
® = E = -8
A sketch will make this obvious or it follows from Fig. 5.

Alseo:

]

‘E’ = - '{
':Ef+= f
B. Components of a vector. The vector a may be written:
(I3 a = a; + a,
- 2 55
@4



Here a is said to ke a two dimensional vector. & ane  a,
are its component vectors. For three dimensions oﬁe eould
write:

{ 2} a = 2) + &, + &g

and for n dimensions one could write:

(3) a = ay+ ap 485 + .. 8, .
It is fashionable toc consider a set of unit vectors mutuzally
perpendieular to each other then one would write

(4) a = a) i; + .. a8, i,
where now the a. are scalar components of vector a. From
equation [ 4 ) we get:

L e Nt

In linear programming, in the styling of the Few Science of
Mutation Geometry, one makes use of such equations as ( 5 }
in dealing with polyhedrons of many dimensions. It will sim-
ply matters as we shall see, The o¢ld simplex is tooc comber-
some, with all its baggage of slack variables, expansion
bases, degeneracy, cycling, and the like. Mutation Geometry
offers the hope for a better day.

Henceforth ws shall consider our components as rectangu-
lar. With this conveniion we shall omit the unit vectors
from our eguations. I+ greatly simplifies the rotation and
no confusion need arise, We add, subtract, and multiply cor-
responding components, For example we add twe veciors a and
b and get:

g = 2 + 3
W F ok 4
a + b = 5% + T,
For hyper vectors @
a = 2 + 3 + 1 + 5 + 7T + 6
E =43 4+ 2 % & 3 32 % g &3
a +b = 6 + 5§ + 7T + 6 + 9 + 3.

In linear programming we shall largely be dealing with
hyper vectors.



9. Sealar Product of two Vectors. For two vectors & and b:

a = & + a,
b = bl + bE
(1) P = a.b = 8 b + a,?b,
Fumerically:
a8 = 2 + 3
B = 3 + B
F = & :+H8 = & + 35 = @l

¥ote that 6, 15, and 21 are all scalars. Note also

a = 2 + 3
ig = - 5 + 2
W
F = A .8 = -6 + 6H = 0. This is as it
=
shouid he,
10. Vector Difference The difference hetween two vectors

a and b will be written:
[ e = a = b.

For the diagram of its configuraﬁéan see the sketch below.

a
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Fig. B

we know from previous theory that

P o+ B o= g
Transposing b we have

¢ = a - b,
In words the difference of a and B is the vector joining their
termini ard poimting from B to a, From the sketeh below one
seeg the sum and difference of two wectors. The diagonals of

the parallelogram construvted on a and b represents thelr sum
and difference,



o

Fig. S

8 B Equation of a Straight Line, In analytic geometry the
equation of a straight line may be written:

Ll 3 8y Xy + 8,%, = b
This may be facrored into:
((2 ) 8.1 = b,
a=&1+ E.-g.
ro= % o+ X,
We may write ( 2 ) in the form:
(73 al . r = (v/ay) = p

Here b is a scalar and a, is the magnitude of wector a. p is
the perpendicular distan@a from the origin to the line. See
the sketch below,

Fig. 10

The projection of r on al, a2 unit vector perpendicular to the
line, is a constant p nd matter where the terminus of r is
on the given line.

12. Zguation of & line thru a given point parallel to s
given direction. ILet a be the vector to the given point
and vector ¢ the given direction. See the skeich below.



0
From Fig. 11 we may write the equation:
s | r = & 4+ te

where t ia a secalar multiplier. This last equation is wvery
usful in linear programming Mutation - wise. Eliminating %
from the last equation we get anothe form of of the egquation:

[ 2 ) . = € .8
The equation of a hyperplane may be written:
(3] a . rr = [+

where a iz the normal to the hyperplane and r is 2 vector
whose terminus is somewher in the hyperplane.

The faces of the constraint polyhedrons in linear programming
are hyperplanes. 0Ones success there depends on how well one
can manipulate these faces.

I%. Selution of =n linear eguations in m unknowns. Consider
a system of the form:

( 1) A.r = B

Here A is the matrix of the system of coefficients of the Xy

gand r = X + X tomen Xy ig the n dimensional vector
of the unkiiowns agd b is an @ dimensionsl column vector. From
equation ( 1 ) we get:

{?} r = _Fllnh

In conventional linear programming, using the simplex
scheme, finding the inveree of a large matrix often presents
2 problem.

In linear programming, using the new science of Mutatiom



Ba

Geometry, one has no need for the inverse of a matrix for
there is no expansion of wectors in terms of bases and hence
no possibllity of degeneracy . No slack wariables are needed -

With the vexations of degeneracy, expansion bases, slack
variables, cycling and other complicating factors, inherent
in the simplex formulation, not present, Mutation Geometry
ghould be able to put linesr yrogramming on a more satis-
factory foundation.



