Chap. 2
MUOTATION GEQMETEY

Mutation @ecmetry is the science of intangible change.
It ie based on a single proposition of Mutation ezalled
omega [ ) and & single postulate called alpha { Ja
This alpha postulate is implemented by a Mutation Diagram.

Before we state and prove this Proposition of Futation,
state and describe the alpha Fostulate along with ite imp-
lementing Mutation Diagram we should like to do some simple
things Mutation-wise ( not that the foundations of Mutation
Geometry are not simple). They are very elementary notions.

1. Equation of a Straight Line Mutation-wise.

Find the egquation of a straight thru two given points.
Let a and B be the two vectors from an origin C te the two
given peoints and r 2 vector from O to scme point in the
line passing thru the given points. See the sketch below:

Fig. 12
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{ r-b ) is a segment of the line and ( a - b ) iz a seg-
ment perpendicular to the line, We may then write:

s W { & -«b 5:- {r-83) = 0O:
L2 ) R f +r = & .01

Expregeion ( 2 ) is the Mutation equation of the required
line, For example, if 2 and b are:
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ar ex # 3y = 13

Cre can do them mentally: i
k202
x + 8y = &
T 7
(4,6 )
d o+ Fyg = B4

In the last example we subtract the 2 from the 6 to get the
4 for the coefficient of the x and we subtract the 4 from
the T to get the 3 for the coeffivient of y. One then puts
either of the given points into this and gets:

28+ 6 = 34 = 16 + 18 = 34

With a little practice cne can just write down the answer
at once. The equation ¢of a plane thru three points may be
eagsily written down or the eguation of a ¢ircle thru three
pointa. It is a2 matter of ease.

2. in Alpha Frototype Product

we call the scalar product a.b an alpha prototype pro-
duct.,
& Omega TProducts

The double product (a2 . b ) { ¢ . d ) is an omega
type product.

& ¥echanical and Analytical Solutions of an Alpha type
product in two Dimensions. Given:

For the mechaniecal solution for rl we put a eirele om
vector & 828 a diameter and with the origin U as center and
radius b we cut this eircle in tfo points A and B giving the
two directions ©OA and OB for r~. 3See the sketch below:




Thiz is g¢ for the projection of a upon rl is b in both cases.
The analutical sclution is:

-y

B2 3 = { ba =« & ( 8°r w  be )% ) / a®

If we put rt from ( 2 } into (1 } it satisfies and the

square of both aides of ( 2 ) gives 1., Thus equation { 2 )
is one solution., It is proven in the unpublished Mutation
Geometry that ( 2 )} is the only solution of its type and
thus one may use it with assurance of its correctmess., There
may be other soluticons of a different type and with bheauti-
ful properties but 1f they exlst we are not Interested in
them now. We have one solution ( 2 ) and we go with it. It
is all we need now,

In linear progremming we shall be interested primarily
in polyhedrons, in particular hyperconvex polyhedrons formed

by the hyper planea represented by the equations of constraint.

For the PMutation enlightenment of the students we turn
aside, temporarily, to deal with apparent extrameous material
and it may be for some who may not be able t¢ see the comne-
ction now,

We shall not go too far in a2 wholy new science FRutatiom
Feometry. We shall only prove the Froposition of Mutation,
state the alpha Postulate, describe the Mutation Diagram ané
work a few probleme s¢ the student can see the Proposition
in action. We shall alsc solve the primordial alpha prototype
product splintered splintered from a number of omega prosucts
and assembled, at the choosing of the student, in accord with
the alpha Postulate, into a single alpha projuct. The Mutation
Diagram pinpointe each of the constituent parts in the final
protype. After this we shall record ( not prove here | Some
of the Monumental expressions From Mutation Geocmetry.

Mutation Geometry has generalized all the more Important
Propositions of college geometry such as the Simsom Line The-
crem, the Brocard Theorem, the Problem of Apollonius, etec.
It can do every stunt of projective geometry, such as the
eonstruction of the points of intersection of a line with =a
conic given by five conditions when the conic is not drawn
or any of the other marvelous doings of projective geometry
without a great build-up. This is possible because Mutation
Feometry has emancipated the human mind from the necessily
of logical order and sequence. Who ever heard of any one
writing a Conventional geometry without the theorems follo-
wing eavhother in a logical order. It is a necessity. Not
so in Mutation Gecmetiry. There 1s mo seguence to a single
thing: The Froposition of Mutation,

The essential operating principle of Mutation Geometry
is in a Proposition of Mutation splintering omega type pro-
ducts inte a sum of alpha type products which are grouped
into a chosen single alpha type product called the primor-
dial compesite alpha prototype. It is generally identified
with one” of the splin%ered groups | the choice of which one
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Being at the whim, fancy, or capriwe of the student ). These
gtatements will not mean much till the student learns how to
operate the Wew Science of Mutation Geometry.

%. The Proposition of Mutation

The single omega product a . r b.r can be splintered
intc two alpha type products:

(1) a .17b . F = 2 ta.b + &8, it 2

({2 ) b r ’ = by

Bquation ( 1 ) is an algebraic statement of the Propo-
gition of Mutation.

Equation ( 2 ) states that gamma is the symmetric of b
with respect to r and in magnitude is egual to that of b.

Before we prove { 1 ) we lock a little further. The ex-
preseion in { 2 ) is a2 Mutation Diageam for a single omega
product. Suppose we have 2 sum of omega products as:

1 1 X L

{ 3 ) S = a . rl i RO, Ll SRl TR i I TR .

and we splinter them with our Proposition of Mutation getiing
(4) & = (a,.v+c.d+e.f)/2 +
((a o)+ .F+e.8) /2

{ 5 ) fh}- /\ b r
o S d r
§ A T

Here { 5 ) is pur Mutation Diagram.

It is proven in the unpublished Mutation Geometry that
the angle between alpha and gamma is the same as the angle
between B and 4, known vectors, and in the same way the
angle between alpha and delta is the same as the angle be-
tween B and f, known vectors.

If this is so we may write, with the help of ( 5 ),
equation { 4 ) as:

{ 6 ) § = M + N.d
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H = (a8 # & ,d +~ @8 . /2
¥ &, o 4 f@ < Y2

Here E\ and ‘& are called comigrates. © iz ¢ rotated
thru the angle b to d and in the direction ® to & 2 kneown
angle and direction according to the Mutetion Diagram which
iz an implementation of the alpha Pestulate, In the aame way
e is e rotated thru the angle bt to f and in the direction b
to £ 2 known angle gnd direction, We have chosen to group
211 the alpha products into the primerdiasl alrpha prototype
product ¥ .4 . 6 One ecould have chosen to send them into any
prototype as L.‘I if so desgired. It is at the fancy of the
operator. [0 is a known vector and can be drawn. If S should
be known we could write equation ( 6 ) as:

€ ) E.d= F

F = § - M.

B = (®

We can solve [ 7 ) either mechaniesally or analytically.
See Fig. 1% and ( 2 ) following it.

If we know alpha {g-) then the Mutation Disgram teaches
us that r~ is the bisector of the angle telyeem the krown
vectors & and alpha ( 4~ ). Thus we know r .

&, The Alrha Pestulater

The alpha and omega preoducis are regquired fo be tempo-
locally inveriant, time and local having nothing to do with
their value, They may be mentally shifted ( intangible change
tosged of herded from hither fto yon without altering their
velue.

This Fostulate is a cardinal prineiple of Mutation
Geometry, The action in fhe Mutation Diagram is an imple-
mentation of the alpha Fostulate.

Ts Proof of the Proposition of Mutatiom.
¥e recopy here the algebrailc expression to be proved:

X)) a a2 ko rt ({a.b + &8 .¢1 /)2
el b

S

See the sketech beloaow.

i
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Fig, 14

Propogiticn of Mutation

Let AE represent a and AX b. Let the unit direction rl
lie along AW, Draw a line AL equal to AK and s=king angle
KAW egual to angle WAL, Complete the rhombus om AK and
AL as EALW. Draw B, BF, and BJ perpendicular to AL, AW,
and AK respectively, Draw FE, FI, FH, and F§ perpendicular
to BO, AL, BJ, ang AK respectively. N iz the common point
g0 lineg AW and KL, M is the common point to lines AW and
Bgﬁ It will now be shown that BF is the bisector of angle
EEH.

In right triangles BFM and AWJ there is a common angle
at M so angle FBM and Maj are equal. In right triangles HIR

and AFR there is a common angle at R so angle RBD and RAJ are
equal. Now angle HAF and MAJ are equal by construetion. Thus
angle RED and FBM are egqual, The followinf reiations may be

written:
{1) J&8 = HF = FE = DI
{2) PFI = F@&
{3) A6 = AI = AJ + J6 = AJ + DI = AJ + AD = AI

= AJ 4+ AD - A%, Thus

(&) 2a8 = #F+ A%,
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Multiply both siges of { 4 ) by AK and get:
&) 2 AK AG = AK AJ + AKX AL,

From the similar right triangles AFG and AFE ome has:

{ 6 ) AE / AF = AW / AG or
(7 ) AK AG = AF AW,
Put { 7 ) into ( 5 ) and get:
(8 ) 2 AF AN = AK AJ + AK AD,
(9) A = a.r
(10 ) &8N = b, ¥t
(11 ) AE A = a . b

12 ) AKX AL = AL AD = a .

.

Here AL equal to AK equal 3o hﬂ in magnitude , is represented
by alpha % )
Put { 9 ), ( 10 }, ( 11 ) and ( 12 ) into ( 8 ) and get:

{ 13 ) a .- Bb .1 = ( asBD + &5 y 2

which 18 the Proposition of Mutation. The truth of this
may also be demonstrated synthetically in the folloeing
way:

(14) a.rrd.z = a.{(b* ). (bt )

(% )5 (b= g
w lE . % H, JOFF E. HWlas JF
e = 18 =« B30 % 2%y 9+ B wd{8¥%%s )
Put yhis last value back into ( 1 4 ) and get
(1¢) a.rb,.r = (a.b + a. 2.

To a physicist the geometric wvisual demonstration of this
Proposition of Mutation would seem the more pleasing. The
aynthetic proof lends credence to the truth of the Mutation.

The demonstration of the truth of that proposition is
a great stride in the organization of a truly Pan-Geometry
which has unified the field of gecmetry.
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In projective geometry one meets the bYeautiful theorems
of Desargues, Fascal, Brianchon, Poncelet, and host of others.
They regquire a lot of build up with their attendant require-
menta of logical sequence and order. Who ever heard of any
onfk writing & conventional gecmetry without arranging the
theorems in scme sort of logical order and sequence 7

Mutation Geometry hzs emancipated the human mind from the
bondage of logical order and sequence. There is no seguence
to one { the Proposition of Mutation ) , the single operating
princible for the field of geometry.

There is another pleasing aspect of Mutation Geometry
It sets Linear Programming on an entirely new and satisfactory
foundation.

Before we return to the main purpose of this book, linear
programming, we do a couple of elementary prchlems of college
geomelry just to watch the alvha postulate and proposition of
mutation in action.

If the student of college geometry should be required to
make a certain construction with ruler ang compass he gener-
ally makes a drawing as near like the requirecé drawing as
possible and he staris cut to find some relations bhetween
its parts that will enable him to actually make the ponstr-
uction, Some times he is successful but often no relations
are to be found and he is stymied and is reduced to sitting
and locking and if no success he tries locking and sitting
both wasteful occcupations.

Mutation Ceometry attacks its problems head on and does
not have 1o to find relations or connections with rrevious
problems. It moves smoothly to the attaek. It has only one
thing to do. It does neot take long to see the advantages of
such a geometry over the older conventicnal gecmetries.

Froblem. Thru a given poirt P on the circumference of
&2 glven cirele whose center is 0 construet two chords
making & given angle K with each other so that their sum
shall equel to a given line segment 3.

Let & be the giesmeter,of the given eirele, thru point P
end ¥ and ¢ the unit wectors azlong the reguired chords.
The lengths 0f the required chords are a . bard a .c .
OUne then mey write:

(15 ) 2.5 + a.c = 5 = {a + =&
= d . b 3
~ -~
where d = 2 + a, and a is the migrate of a,

n



Mechanically we put a circle on the known line & as a gliameter
and with P as a center and a radiuve 8 cut this cirecle in
points A and B giving the two dlirections P A and FEB for b

and c. One then dAraws Iines thru point P makirg angle K with
PA and FB giving the other chord. One will have two, one

or no solutione according as d, 1s greater than, equal to

or less than 5. One could jusg 2z easily have solved the
problem where there were n chords making given angles with
each other. In that case:

{ 16 ) 3 il =

s}

-~ ~ ~ e
d = & + ah'f‘ & PR e,

L E
The comigrates a. are known construgtible vectors and one
has the same solution technique as in $he case of two chords,

A11 construetible problems of the geometric world are
either in the alpha or omega category. We now do a problem
that is in the omega category:r

Thru a given point on the circumference of a given circle
draw two chords making & given angle with each other =mo that
the proguct of the required chords shall equal the square
an a given line segment. Let P be the given point and E the
given angle and 8 the given line segment. Cne then can wrifte:

{IT} Etbﬂnlcﬁ'SE:apb;-h:SE.
Splintering { 17 )] with the cmega proposition we get:

f 18 ) B @ aﬁg.e - 2 8° whenoe

(19) B.e =t = (28 - a.a )/ a,

(20 ) e N a b

To solve equatiothote put & circle on ‘a as & gismeter and
with F as a center and f as a radius cut this ecircle in
the twe points 4 and B giving the two directions P 4 and
P B for the e. With e known we get b from Equation ( 20 }
as the bisector of the angle between a and e, To find the
other chord one draws a line thru P making angle X with
the b direction, There will ke two, one or no solution as
a is greater than, egual to, or less than f. Let us now
complicate the problem a bit and write:

Thru 5 given point P on the circumference of & given
circle construct two chords making a given angle ¥ with
eagh other such that the sum of the squares on the two chords
plus their product shall equal the sguare on & given line
segment S, We may now write:

16



17
f21) (2.8 4+ ({a.c)

where b and ¢ are the unit directions along the required chords,
In accordance with the alpha postulale the last eguation may
be written:

{223 Ta&.8 3% 2. 5% ta. . EM% 58’

Splintering equation { 2 2 ) we get:

- A { aE + By a . d ) + 32 + aD!E e J
+Eaag+a{}€.dj=2$2t
{2 & d AN a b
e/ a I
Grouping in ( 2 3 )] we get
({25 ) M.4& = N,
P o
M = a + & + A
= L]
HE{ESE-Eadfa.E.ﬁ,-‘HE.G.

A

Equation { 2 § ) is an aslpha prototype whose solution
is stanesard: Put a circle on P as a diameter and with P as
a center and radius N eut this cirele in the two points A
and B giving the required chords when produced. There will
be two, one, or no sclutions according as M is greater than,
equal to, or less than N.

We state again that the problems of the geometric worlsd
are in either the alpha or omega category.

The Proposition of Mutation splinters those in the omega
category intec a sum of alpha products and the Mutation Lia-
gram sweeps them inteo a chosen compposite primordial alpha pro-
totype product which we have shown how to solve both mechani-
cally and snalyticelly. Thus one can, at least in principle,
solve the problems in the geometric world in a straight for-
ward manner nor is cne bouns by any law of oréer and seguernce,

Matation Geometry nas generasliced 211 the worth-while
theorems of college geometry such as the problem of Apellonius,
the Simsen line thecrem, the Brocard theorem, efc. The Gener-
alization of the preblem of Apellonius is to construct a
circle cutting three given circles A, B, and C at given angles
alpha (& ), beta (B ), and gamma (7} respectively where the



angles are unresatricted. There is only one cirecle that will
do this. In the original problem of Apollonius he studied
the construction of a cirele that would be tangent to three
given circles and he gave the correct solution: B possible
circles, There are two ways that a circle may be tangent

to 8 given cirele. It may fouch either externally or inter-
nally and theus for three circles one gets 27 = 8, Fow if
we specify that the reguired circle is to be tangent to cir-
cle & externally ( cut at O degrees ) and bass arsund circle
B { cut at 180 degrees ) and touch circle € externally { cut
at 0 degrees ) then there 1s only one circle possible, The
word tangency has a double meaning.

There are people in the geometric world who are still
looking for an 8 th degree eguation that would give the
8 radii of the Apclloniar problem,

Mutation Geometry says there is no such nor is one to be
expected, It is of the mecond degree where one of the rootis
is always negative leaving only one circle possible. To look
for an 8 th degree equation is an idle dream and an exercise
in futility.

We have not tazken time here to make the actual drawings
for the problems worked nor that for the Apellonian geneeali-
gation . The actual drawing for the generalizaticn of the
Apollonian Problem is a beautiful configurationm and if he
could see it I believe he would evince some surprise =rnd

gatisfaction &t Mutation Geometry,s power over his pet problem,

Those who are primarily interested in linear programme
ing will perheps chafe at this eversiom into am apparent un-
related field but one often needs a background in the work-
ings of the Yew Science of Mutation Geometry and this aver-
gion should enhance cone,s grasp of linear programming which
Mutation-wise has to dc with the geometry of hyper convex
polyhedrons., A smoothe working knowledge of Hutation Geo-
metry will prove to be a powerful tool in the solution of
linear programming problems.

It is a temptation to merely record here some of the momu-
ments of Mutation Geometry in the field of Cartesian analy-
tiecs but we shall not push the patience of the reader too far
and just refer him to a presentation made before the Chio
Section of the American Mathematical Assn, meeting at Miami
University in Cxford, Ohion. See the Aug-Sept issue of the
imerican Matkematical Monthly page €645, 10959,

B. Solution of a System of n Linear Equations in n Variables,

Congider the system:

18



r

{ Xl * xE £l LI ] x- :I

Aj = { ajl " A

Je

A formal solution of ( 1 ) is :

” -1 -1 -1
( 2 ) ro= by AT % By AT+ ... B AT,
where A}l iz the reciprocal wvector to Aj .
=1 & .
Ai i Aj = by E = i
= 0, 1 £ j
System ( 1 ) may be put into the form:
{ =
(3 ) Al : T bl
E.lz - o = {]
Bn - L = .
where hj = | bj Ay = By Aj )

A formal sclution of ( 3 } is the aingle term:
i -1
{4 ) ro= B . AT

s

The Ai in { 4 ) is not the same as the Ail

iz {2 ).,

4z an illiustration of { 4 ) we shall do =2 couple of simple
examples,

9. Gamms vectors

Before we do the illustrative examples we should like
to describe the construction of gamma vectors which will play
& dominant role in the Mutation Geometry theory of linear
programming.

If we have n vectors a, b, e, 4 .... with n components
each and we omit one of them, =ay a , we write :

-2
for the vector that is mormsl to each of the remaining n - 1

vgctors b,qc, d, ... . ¥hen we are dealing with the maxi-
mization of some linear objective fanection the product

5 =8

is always to be negative and positive when dealing with mini-

' e o ] . E j =1, 2,.

.n)



mization problems. We shall skow how t¢ construet ghe gamma
vectors in a number of ways. One sees that there are n gam-
ma vectors for n vectors. Cne may also write:

{ X § SR ol IR B
as the reciprocal of wector a, for
gin wlgy o i fdm e Ve 2

and it is so constructed that it is perpendicular to the other
n -1 vectors. We have devises several ways of constructing
the gamma vectors for they are at the heart of linear program-
ming in the styling of Mutation Geometry.

We shall now dec the illustrative examples promised, Solve
the systenm:

(2 ]} 1 + 2 » 1 |ix 1
2 + 1 - 1 > = g
-1 = 1 + 2 . z
5
This may be written in the form:
% — -
{3‘: = 2 & g i 2 }!'.1 1
e 4 + T = B % o

To calculate )( “2  we take column cofactors of vectors b and ¢

in order from left to right getting:

of =8 o oweme g WP
a . ”ﬂ_'a = wBaae 8 412 = = 4
* = By A7l - 3 (-8 =-4-12)/-24 = 2+1+73

We usually omit the unit hyper-vectors as they cause no con-
fusion end the notation is much smpother without them. We

have gone to 2 bit of detail with this simple example so that
the wreader can see the process without any confusing element.

Example 2. Solve the system:

1 ~-24+1+1 b9 = 2
2 4T - I =1 xé - z
-1+ 04+ 2«0 x3 = |= 4
- F A+ F =1 =1 x4 = |= 3

which may be written:
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a E o i 1ok L x 2
P -1 - 8 + 5 + § Xo 0
o I =& 4+ 4 ¢ 2 x3 = O
d =1 + 0 + 1 + 1 x, O

Again we take column cofactors of rows b, ¢, and d in
order from left to right getting:

TR e e e 3

where we have canceled a common factor =8 from the cofactors.

a. Y™™ = 2
r = b A = 2(2 + 1 - 1 + 3)/[fz2.
. {2 « I = 1 =+ 3,
We know alsoc that i

(4 ) ¥. 0 ™ e b, 3P g, e g

since each expression regﬁesents g determinant with two eof
ite rows equal thus, iz perpendicular to each of the
vectorse B, ¢, and d, A like relation holgs for the other
gamma veetors. The gamms vectors are of prime im-
portance in linear programming in the style of Mutation
Gecmetry.

10, Polariwation in a Plane and in Space.

In linear programming a large number of the relations
are inequalities, They are governed by the two signs:
and > . The sign » means grester then and the sign
means less than.

Coneider the equation:

E X 3 22 * 3y = T

Two points on this line are { 2, 1 ) and { 5,~1 ). When
we put these points into the line they satisfy:

2L 29 % 312 ) 8 @ & 5 =%
2(% ) + 3(-1) = 10- 3 = T

Vhen the peint ( 1, 1 }, which is on the near side of the
line to the origin, is put intc the egquation we get:



2L61] 4+ 34L) = 24 3 = 5 T

In the sampe way all pointe { x, v )} om the near side of the
line to the origin give:

1 B S R

This inequality is a criterion for points on the near side
of the line to the origin.

When we put the point ( 2, 2 ), which is om the far side
of the line from the origin, we gef:

2L R % FAPY o= 4 4-6:1{)"?7.

and ir like manner for all vpoints ( %, y ) which are on the
far side of the line from the origin:

2 X + 'EH‘P'?;

We choose en:arbitrary pBint ( 2, 2 ) an: want to know
whether it is on the near or far side of the line to the
origin. We put the point into the line equation and get:

2 L) £ 352 ) =2 2 ¢+ B = 8B >»7

and it answers: on the far side. The line is paid to polar-
ize the plane into regions 2 = or >~ , s&according as the
points are on its near side, on, or om its far side from the
crigin,

"hwere is no need for slack wvariables in the new formula-
tion of linesr programming. The noticons of polarization will
play a significant role in the new styling.

In the seme way & hyper-plene of n-1 dimensions is said
to polarize a hyper-space of n Jdimensions,

e o am 52D
according as the point is om the mear side, om, or on the
far side of the plane from the origin .

1 d, Polarization and Polyhedrons.

The polyhedrons with which we shall deal in linear
programming are convex { ewery line joining any fwo points
in the polyhedronm lies wholy in the pulyhe&rui?. The poly-
hedrons may be either closed or apenm.

X 24 Vertices ¢of polyhedrons.

If a polyhedron is represented by m relations of
inequality as:



= 2 n { always )

then the wvertices of the representative polyhedron are each
the intersection of n of the m equations which vertices eaxh
setiafies the sustem of inequalities in ( 1 ), n represents
the dimensgionality of the space under consideration.

Congider the two dimensional polygon represented by the
set of inequalities:

¢ . ra

£ ) 1x + O0x, £ 0
(2) 0¥ ~ 1x, £ 0
(.5 ] 1xy = 2xy ® 3
( 4 ) Tmy + 1xy & 9
£ i - 3x, + 1x, = 1
{ 6 ) 1z + 2%, = 14
s E:icl-_'l‘_}L2 = o
{8 3 ~2x + lxy, = 2

Ll
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The wertices sre: 0 (0O, 0 ), A ([ 3%, 0 ), BI{5, 1)
G L 6% Y Dl 50y Bh 2y 8l B Ipd )y B00:1

Point H ( 7, 2 ), is the intersection of lines [ 3 ) and (4 )
but it is mot a vertex since it does not satisfy relation { 7 ).
As we shall continue to see the notion of polarization is a
simplifying element in the whole field of linear programming.

The interior region of the polyhedron of constraint is
sald to be a feasibility region and every point im the feasi-
bility region satisfies the syster of constraint But only t
those points in'the .feasibility regicnnwhich are the inter-
gection of m of the ineguations of conatraint, taken as eau-
ations, are verfices, Finding the vertices is of prime impor-
tance. The gamma wectors will play their full part in this.
Later we shall show how to generate the vertices of a convex
rolyhedron in r dimensions.

Before we do that we turn asifde, temporarily, to deal with
eigen~-vectors and eigen-valwes,

13. Eigen-vectors snd Eigen-values,

Let A be a sguare mairix of n rows and columns and r
a vector with n compenets:

i r = + Xzt -... X

s Ets 1
where for simplicity we have omitted the unit hyper vectors ij‘
Wher 4 i1s applied to just sny vector p one gernerally
gets another wector g, say, which has a different magnitude
and diregtion than that of p:
- A.p = =.

We want to find & vector r so that A& will mot change its
direction but at most change its size. In this case we write:

{3} ﬂ.l":KI‘i

Here r 1s called an eigen-vector cof the matrix A and the
scalar multiplier k is ealled an eigen-value of the matrix A,

Cne may write ( % ) in the form:
{ 4] {(h = ¥TI}).r = D,

Equation { 4 ) has non-trivial solutions for r orly when:
(51 s 23, w W

Expanding eguation ( 5 ) one gets:

2 4
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n =1 _ N=2 n-% _ _ n _
(6) ¥ =14 TRy T, k - T5 k r s (=1 )7 E, =0,

where T, is the sum of the determinants of order J down the
main diagonal,

Tha number of these determinants cbeys the binomial law
according to Mutation Geometry. Thie knowledge saves the messy

expansion of large determinants. For example, for & third o
order determinant we wguld have:

Ly ™

Tn T3 T I3

T % 3 1
which mezans one would have one determinant of the O th order,
3 of the first order, ® of the secons order, and 1 of the 3rd
order. TFor a 4th order determinant we wouls have:
1 4 & 4 1

and in general the binomial law,

Y2 =33

-

TO = 1
Tl = all + EEE I 333
i = a a a. a
e 11 12 11 1% 3?2 &23
..I.
S
i o Byn.  Bua
T3 = all 8- - E:l.:l_:ﬁ
oL eEs  Bug

837 B3y B33

We do a2 numerical example of the third order, caleculating
the three eigen values and their corresponding eigen-vectors.



Numerical example: Given the matrix:

£ = 2 s A )
1 3 =1
3 =2 4
Té = 2 I ) -1 P =1
i + = 26
1 3 -2 4 3 4
T3 = 24-
B2 & gES 4 P6F% = 24 & DL
fdme 204 = F33LE = $F =
kl = 21 kE. = jl kﬁ = 44

Tg finéd the eigen-vector ry corresponding to kl we put kl
irtoe ( 4 ) and get for the first two rows:

O 1 -1
1 1 -1
taking a gamma vector of this { column cofactors ) we get:

ry = o -1 -~ 1

In the same way we get for k, :
-1 1 1
1 N
and the gamma for this is:
2
For ksi -2 + 1 - 1
S .

The gemma for this is:

T3 =

26



4 = 2 + 1 =1
1 + = -1
) - 2 + 4
B, = 2, Py = @ = L s
ky, = 3, r, = 1 + 2 + 1
k3 = 4, L = — 2 - ] + 1

In this demonstraticn we have calculated the eigen-values
first then used them 1o easily get the corresponding eigen=
vectors. Now suppose want to calculate the eigem-vectors first
and then use them to get the eigen-values., We may write our
eigzen enuation as

(7) 4.2t = xrt

where we have cancelled the magrnitude Th from each side of
the eigen—fquatinn. Multiply both sides of the eigen-equation
{ 7 ) by r and get:

(&) ¥ AL ow Erro.rt = k

If we can find r- then equation { 8 ) will give k, the eigen

value. Multiply equation ( 7 ) by ¥ and get:
Eg:l I‘lfraﬂ.l.-rz 0

From Mutation Geometry we have the identities:

{ 19 ) %={il.r]iz-iiz.r?il
[ e T ro = (i, . 1) iz - ( iz .7 ) dq
{ B2 ro= { Lo 4 iy = { iz o T )1,

A

Multiply equation ( 7 ) by equations ( 10 } , ( 21 ) and ( 12 )
and get:

] -~ C f s y
-+ al?} 13 } } -yl 1 = 'D

AT ¥ X i, (= 511%85, dgt Bas 15] - 13[ 8171y * 2451,

Szt = O
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§ | 12 { By il + 8ap 1, + Gz 13 ] -
i}{a21i1+522l2+32313}}qT=D-

One of these is redundant, say ( 15 ), for it can be obtained

from the

{ 16

other twe. We write our eigzen-vector as:s

Put equation ( 16 ) into ( 13 ) and ( 14 ) and get:

i IF

( 18

) ay) + By By + dng By o= hzf ayqt a3 .t aljhj}
1 + =
We thug arrive at two gquadraties in hE and hﬁ' For our matrix:
== 2 + 1 - 1
1 + 3 - 1
] - 2 + 4

the two quadratice become:

( 19

{ 20

) 1 + 3hy, = hj =h,{2+h, = h3 )

} 5 - 2h, + 2 h5 - h3{ 2+ By - By 4P

By inspection , in this simple case, one set of wvalues is:

then

which is
method,

hg —

![3 = I

o= (i, 424,41 )/ 6
- 1 e 3

. = I‘l. A, rl = 5

ene of the eigen-values already obtained by the first
Another set of values of { 19 ) and ( 20 ) is:
h, = 3/2
= «4/2
e

(L+73- /)

H
|

{ 11'1‘ ‘}’!’1.-}.-*]._ {/ﬂ-'La) =



We shall find the corresponding k in a slightly different
way just fot wvariety. We write:

-J!L . = k r
A . r = 8 + 12 =
¢ k = 4.

"
}
A
i
—
It
Sl
H
1
.
H

When x, is 0 our eigen-vector cannot be written :

r = xll.l + hE
write:
£ 2.3 r = x, { by + 1
i 2] r o= Xz { hl + By

+ by ). Instead one may

- h3 ) or

Using equatiom { 23 ) one finde, as one set:

h, = O

Ry, = 1

T = F + T 4 L
Ko F = G + 2 + 2 = 2({0 + 1 + 1})= 2r
20 k = 2. The three eigen-values correspending to our

three sigen-vectors are:

1,

kl = 2
K, = 73
k3 = d

which agree with the previous calculation, ¥We mow write the
generalization for n dimensions:

A = 8y s Byy
Bat  Bog SEs
801 22 Zn3
* = xl |: 1 =+ hE +

|||||

LR B ]

29
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8oy + 8gy By + ..o8y By =Ho( )9+ By oRy L. Ay B )

(23} 3.31+E.32h2+.. a}nhr:.:hi{ i-iidliiilllliiillii‘llj

S \.
=k ( ayy+ ayohot o0 8y B 3)

anl + 8.0 h2 . T P hr 1nEn

The system of quadratic equations ( 23 ) is a piomeering
one from the New Science of Mutation Geometry.

When the system is large these guadratlcs lend themselves
easily to numerical asoclutions,.

We-shall ezl]l this scheme of calculati ei§en-vectara
and eigen-values the ¥ - Way, and that in ( 6 ) the T - Way.

For large systemz the HE - Way seems the macore tractible,
For small systems there does not seem much difference. Ex-
perience will help one to decide,in eliher case.



