Chapter 4.
1. Linear Programming.

Ve shall first consider the maximization problem. We
may write: maximize the lirear cbjective function

{1) P = ¢ .7

subjest to the system of constraints:

{2) A.1rT = Vb

Here ¢ anéd r are n dimensional row vectors

b i an ® dimensional ecolumr vector

b = El + hz b AN B

where m = & &lways.

A is an = by n matrix.



The system of inegualities in ( 2 ) represents & polyhedron
and the solution of m of the m inequalities,taken as equations,

proverly chogen, represents a point ( a vertex of the polyhedron).

The wector to this vertcr we eall H and we aszociate an
infex with ¢hie s> R € [ % 0 2 4 3, «un U2
where the n parentheses contain the numbers of the equations
in A whose solution give K.

we shall always indicate the normale of the equations whose
numbers are in ithe index by ( a, b, ¢, d, +ve. ). If we omit
one of the equations, say a, from the index we can calculate
a f for the remaining n - 1 vectors, the normals with n com-
ponents. We deriote that gamma by

§-a
end in a similar way we get 8~ h, e, R

Ve, for the most part, calculate orly 8 - 1 of the gamma,s
for any one index hecause we do not need or already have the
gamma on which we arrived at the point ( vertex ) E. The
varioue gemma of any one imdex give the directions of the
neighbore of the wvertex whose vector is H. Wg may call the
first point ( vertex ) with which we start By . The neigh~
kors then may be written:

(= ) &n=ﬂg+tnfﬁ'”

where t, is & scalar to be determined in order that the
point K be a vertex of the pelyhedron of constraint.

To find the various t values in f{ 3 ) we put ( 3 )
inte every equation of the constraint system whose number
is not in the index of R, and teke the smallestevalue of
1 found for each one. ‘eae velues of ¢, when put back in-
to { 3 ), give voints ( vertices } on the polyhedron of con-
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straint. The ccnstraint system is always written so that the
column veetor b has all itg components poasitive, then the
normals of the hyper-planes in A will point from the origin
1o the plane.

Suppoge we are leaxing a vertex of the polyhedron located
on & plane whose normal is a +them the ¥ leaving this ver-
tex on the plane whose mormal 18 a for a neighboring vertex
must leave that plane on the side next to the origir in order
for the point reached to satisfy the constraint system. This
kas to be observed. This is in accord with the motion of Pol-
arixation ., What is the same thing:

T

must have 8 negative walue., The sign of the gamma may always
be adjusted so that the above expression has a rmegative value.
That it should have 2 negatlive value eczr be seen from the ske-
tch below. -
-
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If we are dealing with minimization problems then our con-
gtraint system is written:

Aoy =& b
then T S

rust have a positive sign according to the notior of polari-
zation irn order that the vertex attained will satisfy the
corstraint system, The departing ¥ s=must leave the plane on
tke side of the plane away from the origin, This can he seen
from the sketch below.
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If now cne can find an initial vertex ( and we can do it )
of the volyhedron of constraint then our ¥ vectors will en-
able us to sanple the neighbors of any vertex and choose the
maximum ¢f them or minimum of them and to repeat the proces
£ill one finds the desired max, or =min. as desired.

Fote that here we have no use forr slack variables, ex-
pamgion bases, degeneracy, or ecycling. Mutation Geometr ¥
hes disposed of all such baggage and put linear programming
on & more satisfactory foundation.

Having founé an initial vertex whose vector is E, we put
this R, 1into the objective function and get:

PD - o RET. nﬂ

To find the value of the objective function for a neigh-
boring vertex we writes

fp = gl w ooy 4 &
(5} .= % t;c . g &

Each ¥, is always positive and we want P, to be equal tp
or greater than P when dealing with maximdn problems and
sg in that case we use only those f which give a positive
value with the cost vector ¢. For Min ., preoblems the oppo-
aite condition hol&s., This fact saves a lot of usless com-
mutation.,



In meximization problems any vertex all of whose neigh-
bors give negative walues of e . gives the maximum value
of the objective funetion P.

In minimization problems any vebtex all of whose neigh-
bors give pssitive valuses for c¢ . gives the mimimum value
of the objective function FP.

Consider, for a moment, & simple closed polygon and the
line representing the ohiective funection. The normel to this
line is tke vector e, sconstant in magnitude and direction.
See Fig. 18. Let the objective function line whose normal
is ¢ take various positions across the polygom of conetraint
as Ml e 5 MoBey Mol +ill it reaches some point as €
where N &nd K c:iﬁcide.j Tﬁe value of the objective function
¥ for every point on segment M K increases zs M F recedes from
the c¢rigin according to polarization and these points satis-
fy the system of constraints for maximum problems, for they
are on the near side of each line pf the constraint system to
the origin. In the limit, as M N recedes from the origin,
there is only one point on M I which satisfies the constraint
system, namely some polnt as {, This point is also the inter-
section of the fwo lines B € and C L and thus by definitior
is a vertex of the polyhedrom of constralnt, Also the objec-
tive line +thru C being the farthest from the origim takes
on fts maximum value according to polarization.

If the vector ¢ shouls have such a direction that the line
MY in the limit should coincide with a chord of the volygon
of econstraint such as BC then every peint on BC would give
the same maximum wvalue of the objective function as points
EBand C.
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The same principle holés for a polyhedron in o dimensions.
The plane of the objective function, in the limit, veaches a
noint ( wertex ) of the polyhedron or it coincisee with one
of the faces of the polyhedron and all the wvertices on that
face give the same maximum of the objective function. The same
principle cam be taken for minimum problems.

The principle of polarization enables one to reach con-
clugions that are belabored in long " proofe " in many texts
in conventional linear programming,

2. Initial Vertices.

We start first with the maximization of the objective
funetion P. We divide each term ir each row of the matrix A
into the b component of the b vector in each row forming a
B matrix.

£ 2.4 Bij = b/ 8y 4 j = n+l ...m=m

T Ehk iz the smzllest positive entry in columm k then
the wecto¥?

{2) H. =[‘,D+{}"'--Bhk '{'G+ﬂ+tiihﬂj

n

where there are k -~ 1 =zeroes %o the left of the component
and n + 1 - k =zeroes to the right of it, represents a
a $ertex of the polyhedrom of constraint givem by :

{ 3) A, r =% b

This vertex vector satiafies the constraint system for
it oniy has to satis the members in the k column and it
does since it ia the smallest term in the k column. It also
satisfies any negative term in the k xolumn zince a negative
term is less than any positive number.

The index for Rh b < I
(4 ) Cila T 85 s iRy k #35 e i)

Veetor B iIs a solution of the equatlions whose mumbers occur
in the iﬂdex above and By definition is a wertex of the poly-
bedron of constralint. We state it again:

A vertex of the polyhedron represenied by the censtraint
system

i & ] L. r = b



is given by & vector R which satisfies the constraint system
{ 5§ ) and iz a soclution of n of the equations in mmtrix A.

From this one sees that a vertex is given by each column
in & which has one or more positive terms in 1it.

One ean then put these vertex vectors intec the objective
function F and get a series of P walues and cne can select
the wector which gives the largest P value and use this as
a new starting polnt and contihue the proces Iill all neigh-
boring vertices give ¢ . B negative values at which peint
we have 2 marximum value of the objeotive funetion P.

Enowing how to compute cur ?f rvectors we must now fturm
our attention to an efficient scheme for solving for the
minimum positive t values in the equation:

{EI} E::RG+ t‘&l

We put { 6 ) into all the equations of A whose rumbers

@o not appear in the index for E and we get a series of positive

values of ¥ and we select the smallest from the series which

gives a new vertex of the polyhedrom when put back into { € ).

In the same way all the other Y from the index give new
vertices on the polyhedron of constraint. n gammas can be com-
puted for each index, Im other words each vertex om the pcly-
hedron has n neighbors. Kost generally we compute only mn-1
from each vertex since we already krnow the F on which
we game to the vertex under consiseration. One also uses omly
those 7 for which e . 3 is positive in maximization.

Sxample 1, We first do,a simple illustrative numerical ex-
ample:

Fingd the maximsm value of the objective function:
E = X +
& 1 41’.2

subject to the system of constraints:

{1} -1z o+ 0x = 0
(2 ) L] Xy - 1 X, - 0
( 3} 1x o~ 2x, = 3
{4} 1x + Iz, i &
(5 ) “ g W I £ 1
(&) Ixy w2 x £ 14
LG 2x = 1z = g
{8 2% o+ 13 fo 2
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Every problem in linear programming Mutation-wise will be done
by means of =2 Grand Table into which one inserts the data and
cranks out the answer. We shall go to a lot of pains to explain
every detail of this Grand Table for it will always bte withus

in some form, Ite organizeation may be improved but for practical
purposes it now seema sufficient for task ahead, We shall never
write the first n numbers of the conatraint system into the
Grand table for they are slways the same: a string of - 1,s

dewn the main disgonal and for mimimum probs they are + 1,s,

For our simple problemwe write the following Table:

0 1 2 b 1 2
3 4 =2 3 3 -
4 1 ) 4 9 9 9
- S 1 1 - 1
6 1 2 14 14 T
T 2 - 1 9 4#5 o
8 =2 1l 2 - 2
x 3 i
c 3 4 3 4
P 9 4
R 3 0 g (3 2 )
'?"h 2 1

£

1 =2 = 5 -
4 3 A [ 2
b = B - 9 10 -
£ g . 2215
T z 6 3 1l
8 -3 -6 B -
T 1
9 2 1

5 1 12 (7 3)
nr 1 @

i ! 1 -5 5 -
2 =2 -1 1 -
4 . 6 3 1
5 =1 -1 4 15 -
6 5 7 7 1.8
g G =9 11 +
T 1
10 1 2

B, 6 3 { 4 T3
“t5’ -1 o

: § < -6 [ [
2 =1 -3 3 -
2 =% ] 3 =
5 4 - 15 16 4
E 1 12 2 2
g o = A __T1 4
T 2
11 - 2 2

& 4 2 (6 4] Nax;
oy i 1




This table above is designed for finding t values effiei-
ently. The first row is the numbering of the columns. The O
column down to 8 contains the numbers of the equations of
the constraint system forming the & matrix. The numbers in
columns 1 and 2 oppoaite these numbers are the coefficients
of the egquationz in the A matrix. Column 3 is an empty colu-
mm for this problem. Column b contains the components of the
column veector b. Columns 1 and 2 to the right of column b
contain the B matrix whose elements are the components of
vector b divided by the elements of A in the same row, The
smallest elements in columns 1 and 2 of the E matrix are
%7 and 1 respectively. The letter x is written in the same
row in column Q. C, fhe cost vector is written under x and
its components % and 4 are repeated in the B matrix, F, the
cbjective function, is written under £ and the product C . x
which is 9 and 4 is written in the same row in the B matrix.
9 is larger than 4 so we take R3 {3 + 0 ) as our initial
vertex vector. The corresponding“value of P = C , K, = 9
is written in red in column b. Looking in column 1 inm fne
B matrix we fing 3 ang girng in the same row to column O we
find equation . The 3 in H:ﬁ represents egquation 3. This sane
3 goes into our index ( 3,72 ). In finding R. we made X.ecugl
to zero and the £ in the index represents egdation { 2 %. We
rnow leave the point { wvertex ) R, and so we compute our leav-
ing direction from our index: The is the column co-
factors of the normal of eguation ( 3 ). The product c.
gives a positive value which is indicated by = + subscfipt
at « In Cplumn O below are the numbers of all the
egquatione of the constraint system nct appearing in the index
of R, . They are: 1, 4, 5, 6, T, 8. To the right of these
numhérs in column 1 are the values of put into these egu-
ations. Is column b to the right of these numbers is the value
of Ry put into these equations. In row 1 to the right of these
valueés is the difference between the last values in the b col-
umn and the values in the b column of the same equations inm
the A matrix. Column 2 to the right of these differences is
the ratio of the numbers in column 1 in matrix B to the cor-
responding numbers in column 1 in matrix A. The smallest
number in column 2 of these ratics is 1 and this occurs opo-
site equation ( 7 }. We multirply by this I and record
it in row 9 under T. We add R, and row 9 and get E? whose in-
dex is (7, 3 ) and cur P £ ¢, R, = 17 We'repeat the
rrocess till we reach R, whose index'is ( 6, 4 ) and P = 7C
and = =2 4 F Th% - gubseript with showing that
there are no further tnereemse in F wvalues. In other words
we have reached a maximum,

It is instructive to watch the flow of the numbers into
and out og the indives.

For a sketch of the constraint pelygon of this simple
problem see Fig., 15 where we have calculated all its wvertices.

40



Example

W = e

AT

2.

For a three dimensionsl problem we write:

Maximize the objective functopn

F
(4
(5
{6

e

i?
The

.

12

)
)

)
)

2

o

H  wd

AN

12 x4 + X, + Xz
subject to the constraint system
% -+ 4 Xs - 3 x3
5 Xy + & X - B %z
Xq - - X, - A Xz
% + X, - X
Grand Table for the soluticn of this
3 - B 0 1 2
-3 10 10 2.5
-8 15 > 2.5
4 10 10 -
-1 4 4 4
3 225
1 12 1
bls) 245
0 i f 2 3
U
5
-8 -3 3
-7 3 i
28 3 7
3 3 1
g S
1.25 8L.E5 i 5,

Ik

N

10
1%

110

A

problem is:

3 4
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3¢ 0 4 3

”zfn:b -4 0 5

s ¢ -5 5 4

5 - 125 1435 -

4 1 1,25 8.75 1.25
T 1 B T et g
T 0.25
a 06 1 .75

st 5 1 Hax
:b- 1 g

.

ey ey d
! n-hl-l-'\-

Above is the view of the polyhedron representing the constraint
equations ( 4 ), ( 5 ), & ), and { 7 ). The path tzken by
the point ir the maximizing process is shown by the red arrows.
juat for orientation, we have ¢olculated a number of points

so one could see the shape of the volyhedron representec by

the constraint eguationa. They are recorded below.



A(3 + 0 + Q) EE
B(O + 2.5+ 0) 2u8
343 % 4 # 3] 43
DS £ 2% 21 &% Max.
E{& « 0 % 3,283 &r.as
Fl4 « & + &) &0
(0 +10 + 10 ) 20
E(Q0 + 0 + 2.9) 2.5

One knows that point ( wvertex ) T gives s maximum for the
two gemmas J° andP~¥ going to the neighbors of D namely C
and F give negative values with the cost wector e. The numer-
ical calculation of F for the other vertives of this simple
polyhedron show it alse. It is good to have a confirmatiom
of a theory.

Example 3. Tor a fgur dimensional problem we write:
Maximize the objective function
E = = Xy F il %q + 2 X3 + 2] g

subject to:

63 2 B ot 2% = 1 X5 - 1x, & 7
¢ =1 58 X, o+ I35 Xy = 14 x5 - 5 Xy = 20
{8) S=x + 17 =x; - 28 £y + Bx, € 10
{9) 2= «+ 1lzx; - 7 %5 = 1x4-§§25.
The Granéd Table = &, T. is on the following page. We

point out agein that the first n numbers in any congtraint
system are alweys omitted for they are the same for 211 srob-
lems of that dimension. They would only be in the way. One
avoids 21l unnecessary confusion factord that are nol needed.

For three or less dimensions one may draw a picture of the
gonstraint polyhedronand a visual picture generally helps but
tkst we cannct draw the polyhedron for higher dimensions will
not sericusly handicep us, A mental picture is more accurate
than one actually drawn.
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i B = =% B
TP Gkt =h =g
¥¢ o 3 & 5 B
e 5 T SR T D
% W T
A =5 v m
6 = 3 - B TH -
4 ol A
e -

We point cut that there are as many initial vertices om
the constraint pelyhedron as there are columns in the system
of constraint., This ie also the same as the number of unknownms
in the constraint system. For example, one could have started
with either of the four columns in the last problem and found
an initial wvertex. We started with column 1 and got:

I = R'_II' -3 2 -+ 8] + 0 + 0

We could have used column 2 and obtained
3 - (o] + 0.6 + 4] + a
or column 4 and obktained

EF = 8] + 9} + 0 ¥ 1.25

ag initial wvertices con the volyhedron of constraint. here we
have omitied their corresponding indices. Column 3 4id rnod
give a real wvertex since all its entries were negatiive, For
all these vertices the Grand Table will give the same maxi-
mum value for.the cblective function: 45, We choose the
first vertex above becnuse its initial walue was slightly
larger than that of the others and should require less work
to reach the maximum.

The same holds true, with some slight changes, for mins-
pum problems. we shall solve a number of illustrative prob-
lems incorporating these igeas,

Exzmple, Find the minimum value of the objesetive function:

. oF g s
F A xl r 4 12 + P 13

gsubjiect fto:

o 5%y =~ 2xy 2 &

- 3% 4 5x, + 5 X 2 15
4 X, 4+ = Xy - = X3 = iz

pel Xy 4 2 s 4 5 xﬁ o 10
X+ 3 Xy + 6 %Xz > [
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) T z 5] Ll B il & 2 .3
T T = 7 B 3 Z =

5 =3 5 5 15 = 3 3

2] il g =3 12 5 & -

T e g 5 10 k5 5] e

a8 1 % & & £ 2 2

5 6. [ 3

C 3 4 s i 4 2

g 18 24 6

Rg O & 0 28 (B 1 3 3
g_l i - 0 =5

e’ 0o z 2 16

2 -z 65 =~ B b

4 - 5 18 =12 oA

g ~13 Z -15 1 %

7 ) T2 =2 1

5 i 15 18 =12 2.4

T 1

9 i =2 0

LB 1 4 0 L 7 5 6 )
& 2 ? 15 z 24

e I sl 0 o= I

1 g 1 SRR = =

R, | S 4 =4 4713 4

4 =35 - 2 1% -7 Q. 2.5
5 =79 =8 17 =2 2/79 0.2%
g =19 .9 1% = T 1/19 3.5
T 2775 0.25
10 0.2 - 0.33 0.CE

11 0.25=0.25 0 _ _

Ao 1.20 3.67 D.CE G4 LB 7 .
F\% 1}?5 ?ﬁ-?i‘ D -I.-".::I |: :|
g® 15 25 -16 113

g’? 25 =11 26 83

Fote that only those g | gamma ) vectors are used which
have a negative @.g value which 1s alwaye recorded in cclumn
{n+1 ). For a 3rd order problem they are listed in the
(3 + 1 ) or 4th column., The last two gamma have vositive C.g
valuer 113 ard 85 respectively, showing that there is no
nore decrease in the value of the objective funection which
is listed in red in eclumn b to the right of each x. The num-
bers following each T are the gamma vectors vectors above T
rultiplied by the t vzlues in row T to the raght of T in
arder. The Eesulting vectors are added to the indexed E above
to get the various E following these vectors. The best R is
selected from these K and a new set ¢of gammas are computed
from its index and the process repeated till a minimum is ck-
teined, When the ( n + 1 ) column is needed otherwise, not
explainable here, or is not present the C.g values are listed
in ecolumn b.
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This is good ard well when some cne column in the constraint
system nas all its entries positive but how about the constraint
systems with no such columns? How does one find a vertex on the
polyhedron of such 2 constraint system?

Cne way is Yo gc with the equations in the constraint system
which have positive entrles in a column under coneideration,
testing those eguations with negative terms ir the column, for
satisfaction by the moving point on the reduced polyhedron.
Une does not compute t values from those eguations with nega-
tive terms until they come into satisfaction by the moving
point on the reduced polyhedron. At the woint of satisfaction
n gammas must be computed instead of the usual n-l1. The pro-
cess 1s continued tiil all the equations with negative terms
have been satisfied, the last point being a vertex on the ori-
ginal polyhedron, Une can then proceed %o the answer certain
25 previocusly demonstrated. We shall illustrate with an exap-
ple or sc. We shall re-seolve the above problem using column 1
where equation { % )} has a =~ 3% entry. Our Grand Table is the
pane as the problem just solwved:

0 1 2 % 4 B 1 2 3 4
4 1 3 -2 B 2} 2 -

5 =3 5 5 15 - 3 3

b & 2 12 c & -

7 2 2 5 10 B 5 2

& 1 3 6 £ 6 z 1
¥ [ & 3

C 3 4 2 3 4 2

P 18 24 6
Re £ B 0 B [ d 2 ~ 2
g2 -3 1 0

£ g 8 1

T =3 & -5 2

5 -18

6 =10 24 12 LB

8 0 6 0 z?

aF 0.5

9 o lrS Diﬁ ':I'

R 4.5 0.5 0O 2% 3 i g
g -19 1 ¢

or g 1 o

1 -15 2.5 =4yh  Deed

2 1 G5 =08 s

5 =

6 -86 X9 = 0.08

8 8 é -2 -

7 0.08

10 -1.55 €.C8 0.33 :
Re 2,95 0.58 0.33 11.23( 6 4 T ) subsmin.
g4 w8 13 =8

el 1 1 2




1 8 1 2.95 -2.489% 0.37

2 1% 1 0.5B =058 =

3 - 2 .33 =0.33 0.1¢&

5 = 4.5C|

8 18 16 6,67 ~0.67 - -
i1 0.1t

1 - 1.28 2,08~ 0,33

R.j 1.67 P.EE D 15.65( 3 o T
g ! wl ‘ 0

g"ﬁ 1 - 1 0

i -1 L.€6T =1l.6T 21.67

2 2 2,66 =2.66 -~

4 5 9.65 =-5.8% -~

5 8.29

8 5 9,68 -3.65 -

o 1.67

Rl o & 0 24

5 30

Here 3, satisfies equation 5 and is 2 point on the original
pulyhe&run. It is the same as the K. in the previous calecu-
lstion. The remaining calculations gre the same as thoge in
the first calculation, giving the same minimum answer 12,38,

We now sglve the same problem using columr 3 where egs.
{(4) and ( & ] have negstive entries,

g i} 2 2 4 B 4 2 3 4
a 1 T £ 3 2 h

B o= 3 5 5 15 - 3 3

g 4 5 = F 12 3 6 -

s 2 2 5 10 5 5 2

8 1 3 3 6 g > 1

i A 3 B

C 3 4 2 3 £ 2

P 18 o4 6

R5 0 0 2 6 I 5 1 2 ) eubemiy,
s

g 5 0 3

£f. 8 3 %

3 3 =1 7 - - B

4 - &

6 - 9

7 25 = % 15 -5 - 1.67
£ 3 .3 18 =12 w 4
i 1.67
? {} l;ﬁ?_ I.E‘T

g, B 167 1.33 23407 1 5 )
g 15 25.0 -16

=° 0 5 2




2 25 5 1.,67 <1.67 = -

3 =16 -2 1.3% =1.33% 0.08 0.66

4 2,55

& - 0.65

T D.08 0.66
10 1,24 2.07 -1.33

11 0 3.30 =1.%3

R, 1.24 3,714 O 18.68 (3 5 v}
2 0 4.97 0O 16,52

g'ﬁ -1 1 0

g 5 3 0

WA caw wom s

iE - 15 1,28= 1,24 0,083
2 - 25 FaTd= 5.7T4 0,150
4 -132 12,462 6,46 0.05

£ -158 12,44~ 0,44 0.0028
g £ 12,46~ 6,46 b3

T 0.0028
12 0,04- 0.07 0,05

Be 1,20 3,67 0,05 i8,736( 6 5 T.) Hiw,
g2 16 26 -4 +

g1 25 ~11 26 .

Using 211 three columns of the constraint system we
have arrived at the same vertex with the =zape minimum value
namely: 1&5.33,

In these three solutions one can get some comparison
of the amount of work involved for each solution. Cne can
see that for min. problems, when the constraint system con-
tains at least one all positive column , the amount of work
ie least. In that case min. problems are as easy as the c
corresponding max. problems.

5. The Ersatz Function Route to Initiai Constraint Foly-
hedral Vertices,

An Ersatz Function is any equation selected from the
¢ constraint sysatem of a minimization problem., The Zrsatz
Tunction is maximized with the reduced constraint system while
the minimization of the original cobjective fanction is suspended.
When the Erzatz Function reaches satisfaction it reenters the
original constraint system and the minimization of the origi-
nal cbjective function is resumed.

We now solve the same problem above using equation (5 )
as the BErsatz Functiorn. We use column I which has & neg. 3
ir eguation { 5 ) so that it will nct be satisfied by the
sub, vector { & 0 O b, We shall meximize the left
side of equation ( 5§ ) till it comes into satisfaction: either
exactly or feaaibly, At that point eguation ( 5 )} re-enters
the constreint system and the minimization of the original
pbjective funciion is resumed. ¥ gamma vectors are compu-
ted from the final index in the maximization of an Ersatez
Function if it is feasibly satisfied otherwise n - 1 gamma,



If 5 column hes more than one negative entry the maximi-
mization is continuwed till all equations with negative entr-
les saptisfy the reduced constraint sysiem. We shall work this
same problem later using column three where we have two neg-
ative entries and thus two Ersatz Functicns. We get on with
tne first column illustration now,

0 3 2 3 4 B 1 2 3 4
& 1, 3 -2 b 3 2 -
5 =3 5 5 15 - ,
& 4 2 =3 12 3 & -
T 2 b 5 10 5 5 2
g8 1 3 6 & & 2 1
X g & 2
C 3 4 2 3 4 2
P 18 28 4
E, é 9] 0 - 18 { 4 2 3 )
g2 -3 1 0
-3
£ 2 0 1
1 =3 [ 2
6 =10 28 =12 : B
7 -4 12 =2 0.5
& 0 6 ) 7
T 0.5
4 =1.5 0.5 0
B, 4,5 0,5 0 s 1 o 3 &)
g7 .19 1 4
S5 5 1
]. -l"‘__',‘ “l ‘115 "4-5 Dizd 'q-+5
) L 1 DIE ‘Gtﬁ . SE
6 -8 =2 18 -7 0,08 3.5
E g 2 6 o o e
T 0.08 3.50
10 - 1.55 0.08 0,33
11 - 3.5 9aD o
R,  2.95 0.58 0.33 ~4.50
Re 1 4 0 17 [ 6 3 T & 25,

The last R, satisfies egquation ( 5 ) feasibly and thus all
the other 8quations in the constraint system since 17 is
greater than 15, One can now resume the the minimization
of the original objective function, leaving K. in three dir-
ections : . _3 7 “

g , £ end g "

The R, above is the same as the R, in the first solution of
this.Problem. In fact one only had to repeat that problem
from k-, to the end for the solution here, We do it here for
completieness,



I
WM

g g8 =131 2 =
g2 I w1 o -

E“? =1 2 0] +

1 B 1 2} -1 = -

2 =13 -1 4 -4 213 4

4 =35 -2 T3 -7 145 B.5

5 =79 -8 15 -2 2/7% 1/4

B ~19 =2 13 =7 7/19 3.5

T 0.025 0.25

12 0,20 -0.33 0.05

IRE+* 0,25 -0.25 0,00

ﬁ5 1.20 3.67 Q.05 TE,.580 5 & T 7 Aot
R 1,25 3.75 0,00 18,75

&% 15 25 .16 "

g1 25 - 11 26 :

Kotice that eguation (%) entered the constraint system
for the first time in the last iteration , having served as
the objective function (erscatz JTunction ) $ill satiefaction
wes reached at 17 which is greater than i1ts constraint value
of 15, At this point ( 5 ) re—irtered the original constraint
system. Wwe point out again that three gamrmas haié to be com-
puted at the point of satisfaction instesed of the usual two.

In all four solutions the same min, value 18,32 was ob-
tained, lending credence to the correctness of the process.

This process can be repeated wher there are more than
one negative entry in & given columm.

4. Geammz Vectors

In chapter three we discussed the meaning of the gamma
vectors., There we used column cofactors to compute them, For
large systems this mode of computing them could entail con-
siderable work, We need an alternative to column cofactors
which should be efficient and relatively easy 1f possible.

We have devised seversl schemes for their computation. We
shall soon illustrate one of thenm.

The vector rormals to the hyperplance in a point index
will always be desigrated by:

B{ gy Bj € G4 5eia J

where X is the vector to the poirnt [ wertex ) determined by
the hyperplanes whose normais are &, b, 0, 4, ..:. &

We cssume that a is the last plane arrived at by some
exma, J1t will rem=sin in the index while tkhe pther normals



are taken out cne at 3 time and = gamma computed for each of
the n - 1 vectors left in the index, each gamma giving the
direction to 2 neighboring vertex on the polyhedron of con-
straint. If we take b out the resulting gamma will be written:

-b
&
and in like manner For the others:
- -0 -
B & 5 B vimaeawesis

There will be n - 1 gamma for each vertex or the polyhedron
of constreint since one 2lready knows the vector arriving at
a given plane,say, a.

Suppose we have a point R { a, b, ¢ } determined by three
planes whose normals are:

a = 2 + 3 &+ 1

B = 1 + 2 - 1

o =% + 1 + Z

2= 9 % 4 1 = § = 7 =1}
=% + 1 =

g£%= 2 + 3 + 1 =-5 + 3 + 1
1 + 2 = 1

Zy sectual trial

a.g"bza.g_czc.g‘b=b.g'c=C¢

showing that each gamma is perpendicular to those vectors 1
left in the index. This is important. The gammas are easy
to compute wgen we have only two veclors with three compon-
ents ezch; simply take column cofactors in order from left
to right. Hote that vector & stayed in the index.

if one had a point index H { a, b, e, é } containing 4
vectors with £ components each whers

E = 2 o+ 3 + 1 + 1
b = I+ 2 #* g & 14
g = 4 % I =5 % 2
d = 3 = 1 + 2 % 1
a 2w 3 oWn § 1
. = L = F o 2

F = L &+ 2 % 4

Fliminating the right hend components from tweo of these wvectors

in pairs we get

O @ I % ) = A = IR |
1. = & # 1

Ge



Put this partisl g’b into the first three terms of elther
a, ¢, or 4, say ¢, and we get:

20 + 1 + 3 = 24, We then divide this 24 by the last
2 in ¢ and we get 24/2 = 12. We then subtrzect this 12
from our partiszl garmma and gt the whole gemma:
g‘b:5+1-1-12,

By act trial

a . g_b = ¢ . g_b = d , g-b = 0

=
showing that g ~ iz perpensicular %o a, ¢, and d, the vectors
left in the index. It woul? hsve been slightly easier to have
put our partial goamma into either a or € since it is easier
to divide by 1 than any other number.

The process illustrated above is a universal pattern = U F.

If we write a b for the elimination of the right hand
comyonents from 2 and b we note that
g-b:aﬂ g-c e ab g-d s ab
ad, ad, a8

Hote that g"b and g ° .have the cormon element a 4, and

that the elements of g  are known from thase of 4 g ané g
and thus there is no computation ypequired for g ~. Cne has

only to pich up the parte from g~ and g ané btsck substitute.

o]

when one iz dealing with a large number of varizsbles there
are many identical parts which only have to be comvuted once.
In fact the last gamma in arny index never haes %o be comvuted,
only piched up from fore computations. Unly one gamma in any
index has %o be entirely computed,; the computatisns in the
others become less and less till none for the last gamma. Ve
shall illustrate it with a number of numericsl examples. Ee-
fore we illustrate this computation we should like to point
out here that large square matrices may be inverted with rel-
atively little computation by means of the gammas. lLater wse
shall illustrate it also.

For gamma computation we start with 4 dimensions.

B by sod )

& = I S T N T
b = l -1 + 2 = 2
d ==L # L F F A+ A
5o o= F a1 o4+ D _
Put this partial gamma intoe d and we get -4 - 4 + 9 = 1.
1/1 = 1. Subtrsct this 1 from the partial gamma above andget



g = 4 = 4 + F3 = 1.

For £ C we write

a2 b = 3 4+ T + 0 _ &

ad = 1 + 4 + 4 = 20w Ze 3 D

Put this partial gamma into 4 and get - 28 - 12 + 15
Jivide this - 25 by the lagt 1 in 4 and get = 25/1 = = 2

Subtract this last - 25 from the partial gamms above ani get
the whole gzamma:

g% = 28 - 12 + 5 4+ 25,
-d .
For g we write:
a b = I o+ T o+ 0 _
e = I % L % 0 = 0+ 0 -1
Put this partial gamma into the firet three terms of ¢ and
eget o + + 1 = 1, Ddwvide this laet 1 by the
last 1 in e and get 1/1 = 1. Subtraet this last 1 from

the partial gemma above and get:

g = 0 + 0 = 1 - 1.
By actusl trial
-h = ~3

g2 .g" = B2 . g'b = d.g° = 0
B2 g—e = E r g-c = d . S_E = CI
a2 . g*d‘ = e g-r‘ = £ . E—ﬁ =
Note that we computed only one initial row for & © and none
for g ~. We Dnéa had 4o pick up the previously computed
elemente for g . We now do & fifth order gamma computat-
ion.

R(a b, ¢, d, )
g = g & 35 4+ L = L 3
b = 1 =1 %« 2 - 2 - 1
B = F % & - E 4+ 3 ¥ Z
-.'i = - l + i + 3 -+ 1 = 3
8 = §F =1 % 2 #+ § % 1
ae==1 + 1 + 2 = 2 blE = =9 = 21 = 14
a8 d= £ =11 + 9 = 1 EEE = =1 = 1 + 14
ge==4 + 5 =~ 3 » 8
= = 1% + 58 - 3. Fut this last partial into a 4 and
01, Then 91/-1 = =~ 91, BSubtract this from the first par-
tisl and get - 130 + 58 - 3 + 01, Put this indo e
and - 60. Then - 90/1 = - 90, 3ubtract this from the

5.

- 25

54
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gecond partial and ge% the total gamma:

=b
£

=130 + 58 - 3 + 91 <+ 90,

Herw bl and b,, are the first and second rows in the second
order of°differentés,

For g_c we write:

ab = 4 # 1 ¥ 5 = F

g2d = @ +IL + § = 1

ae =~4 + 5 = F = 1

., & 56 ~26 +§ =~ 9 F I = B

Put the last partial inte a d ané get 2; then 2/=1 = = 2

then our second partial becomes 97 + 32 = B2 + 2,
Put this second partisl into e axnd get

£€ = 97 + 32 - 82 + 2 - 10%.

Hotice that the last two gammas have the common elements
ad anéd ae.

For g'& we write
abh = 4 + 1 ++ & - §
8 c = =1 4+ 1 ¥+ 2 = 2
5E ==4 %+ § = F = 3
d = X7 = 5 % f
12 e - B9 - B
Coo = M = 4 + 1b

from which we get, exactly as in the first two gammas,

g — -'9 e 39 - 2 G l'T + ED!
For g ¢ we write:

ab
aao

a d

=1 = d e 13 - 3 + ©

= == = =12 - 52 + 7%

_ — i
€5 = €5 = g + 27 + 20
—8

g = =12 = 52 <+ T5 4+ 55 4 B80.



3y actual trial:

a2 . Z = ‘0,8 = 4. g“b = 8 g'b = 0
il T s oy T = By T om e o]
a . g*d = b i g-d . s ES wm B = 0
e m BT S Sa8T £ BE.5" 2 I

Note that we did no caleulations for the elemernts of g °,
only back substitution, and leas and less for suceeding gemas,

It seems preferable to compute all the gammes for any given

wvertex since they cover a lot of the polyhedron of consfraint
and become progressively easier than %o calculate gammas 111l
one reaches ar improved point and then compute gammas for it
till one reaches an improved point and continue thi= till no
points are left for improvement. Some experimentation here
iz in order and each can have the fun of doing his own. We
now 1llustrate with the solution of & &€ th order problem.

Finimize B = Bl

gubiect to the constraint system

A . r £ b
O = 3 4+ 1 += 2 + 4 + 1 + 5 oW
i i} = }L:L * IE + }:,3 cy nd }{4 == e JCE row
b =24 + 1B + 12 +15 +42 4+ 16 + 10 + 14 epolumn
R 2 - 4 i 3 2
2 I 3 - 2 3 &
4 oy 2 i z é
=1 5 1 3 -1 15
-3 T 3 -1 & 14
7. & il i i 2}
-2 1 = 1 P 5 5
3 i ) 2 1 2 -1

-

On the following pages the Grané Table [ &, T. ] for the
golution of the problem stated above is written. We note that
in the Grand Teble the numbering of the rows in A start with
n + 1 since rows down to n + 1 are the same fot all nth order
matrices and it simplifies the Grand Table.

56
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i T RO T e T 152 3
12 T 36 = 16 a0 Ay
T 14 0 o 0
i R
s 8] & ] o] 4 0 B o e -1 T 1 3
T o 2 © 0 -1 0 4

£l 1 1 o 0o -2 o +

2 & H A f =8 ’

et o 1 e 1 -1 0 4

g8 o 19 o o0 10 3 "_

5 ~19 E = 8 0.33

& 10 A | -

8 T 10 8 0.50

o -3 26 =14 0.45
10 =90 26 =il 0.12
11 =59 66 =24 0.41
12 -58 28 <12 0.20

R A 26 -1l6 -

T 0.12
18 0 =2.530 0 1.22 0.12 ¥in.

Big O 3.680 O _5.320.32 ¢,27(10 14 7 1
g_la 0 5% 0O 0 16 =17 +

' o0 -29 ¢ 0 20 11l i

gt 18 -1 © 0 -8 g ;

£2 0 -24 9 0 70 79 *

£ 8 -8 B 8 @O 1 +

The last answer is a min. because the product of all the
gammas with C give + wvalues. This problem has several
remifications and one can learn & lot from it by studying them,

In the first index of this problem one could have replaced
the % by 14 instead of the 7 whiesh we tcok and one could then
proceeded to the same answer by a slightly different route.
Multiple T values represent a degenerate polyhedron but it
really causes no complicaticn in that one can go any route
to the final answer, In a degenerate polyhedron two or more
vertices coincide, the number of vertices coinciding at any
one wertex being equal te the number of eoual minimum T values
in the corresponding column of the constraint matrix, not in
the index under consideration. It would be goog instructive
practice for the reader to solve this problem using the sub-
stitutbon 14 sugested above since the answer is known from
the present solution using the 7 irstead of the 14. Nothing
helps like actual practice .



5., Matrix inversicon

GFiven a matrix

8n1 2nz &nf: e e
I..l'llre I\TritE1= H |: El.,. b, ﬂnl d, " . n :I
where a, b, ¢, ... n are the first, second, third, .. n th

golumns of A. Then

-a _-b -n
g g suan @

are perpenéicular to all the columns of which it is not & mem-

ter. Then

£ ?/ a.g7% ie a unitary vector and in like mannar for the
other wveetors. Thus the matrix with rows

g%/ a.g™"

g% v -
g%/ o.g7°

[

is the inverse of matrix 4., We do an example:

5 & = ¥ F
i ab w3
5 i @B 1
I 1 s
a = Z 1 7 -1
b5 = = - -1 2
& = 1 &1 = a3
g = 4 3 1 =
grae O 0 T 1
Fla 2 L1 W F
2 ° = a ST S . |
#ls B 7 =g =10
B.g 2= 2, B.g? = 6, 0" = 42, dug® = 42 then

ik,



A = {0 0 1 1 )/2

(1 -1 0 1 }/6
(1 =7 =6 =25 )f42
(5 7 -9 =~10)/42

By sctual multiplication one gets:

A, ft-l =

—~ -~ )
a9 O oo
e N e (R
i
-
B

g
0
1
0

o S S s R i

Usually the inverse 1s written with a common denominator, the
determninant of the matrix, but this is not necessary.The de-
terminant of the matrix akove 1is 84. To put ours into the us-
uzl shape one could multiply by 84/84.

We point out agsin that the amount of work in computing

g2, g® g% .... g giminishes as one goes till

the lest one £ only requires back substitution for its ¢
computation. This is a great seving of labor. Chserve 1t.

In the problems thus far solved the constraint system
has had either a greszter than or less than according to
whether one was mirimmizing or meximigzing the objective
function., We now deal with the sign of equality:

Minimize the objective function:

P = L.r

subject to the syatem of constraint
A 5 2 = B

where r is n dimensionel and the constraint system contains
m epustions whewe @ iz less than .

Ta get an initial solution to the problem one sete n - m
of the wvariables equal toc zeroc and solves the resulting m
eguations in m variables getting r, which contains n = m
geroes in its components. Cne then omifs 2 zero in tern from
the n = m zeroes ané calculates the corresponding gammas.

&0



4 solution of the system is:

ri = o :j g ¢
whers g?j is the gomme when the j th vartable is ste equsl
to zerc. The eguation above is put ifto each of the @ zero
equations outsilde the index,which always contains the m egu-
ations, ané the smallest + value selected. A smallest t is
selected for each gamma in ftern. From these the best P wvalue
is determined, The process is repeated $ill the min. is ob-
tained. Some of the romponents of Ty may he negative but this
pffers no serious dificulty.

When the system has one more columns than rows one can
give a mugh simpler solution. We do an example of such a
system: Maximize the ohjective funection

A i

subjiect to

i 2 E A& ¥ = 415
BPL.r = 20
g oy o 3R
G o= 1 + 2 + i S
g = i 4 2 F 2 8
b o= 2 + 1 + 7 + 0
d: o 1 + 2 + 1 + 1
- S X, Xg o *+ Xz + X,
We take a gamma of a, b, and 3 and get
g = 7 - 1 - 3 =6
¥e set x, in { 2 ) equal to zerc ard solve the resulting
system g%tting:
(39 r,=5/70 ¥ 3 % 5 +3)
A general solution for ( 2 } is o opy b

{ 4 )

L

(B ME B AT E 432683 23 ~B87

i

€5 ) F = Cor = (5f7TY 6 t+3)= [(5/76}+3)
¥ = 3 = Mmaxitium



From ( 5 ) P is 2 maximum when t is a maximum, ( 4 ) gives t = -
as max, t in order that all components ¢f r be vositive., With
this value of t our vector, from { £ }, becomes:

(6 ) o m P LT = A = 1 %8 )

All systems with one more columns than rows or one more
rows than columns can be solved in this manner. This is unique
with Mutation Geometry,



