Chapter 6.

L. Parametric linesar Programming.

The key %o parametric linear vrogramming, in accordance
with the New Zcience of MNutation Geometry, is the agzregate
of numbers in the point index for an optimal soluticn. it
tells us what hyper planes combine tc form this optimal point
and it thus shows us the bounds of varation of the objective
function 1if it is 1o conform Yo the system of constraints.

The starting point of parametric linear programing is,
of course, the initisl optimum solution point.

The varation { teetering) of the objective functiorn is
to take place about this optimum point.

That varation has 3 permissable region of validity whether

we are dealing with & single or many varameters.

The chjective function wilil be written as a funetion of
the parameters and then its region of validity will be deter=-
mined. Cne may then wvary the cost coefficients in a way most
suitable to fit any production screduling. We shall get on
with the job.

We shall start with the simplest firet. We shall use one
of the problems already solved in crder to keep cut any con-
fusion factors that might detract the attention of the reader
from the essentials.

We soclved the problem: find a vector r which maximizes
the objective functicn

P = 3 %, + de
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Gubject 1o the constreints:

£ 2 Xy - 2 X, = 2
IL:.].:} X, e 1x=’ = 9
k& -3 xy - I Xy = 1
¢ B 2 X, o+ 2%, = 14
( 7 ) 2y = 1x, = g
B} 2% 1x, = 2

The original scluilcn for this problem may be seen on page 39
and its c¢consiraint polygon on page 2%, Fig. 15, The solution
obtained ie:

rg (4 + 5 ) #p { & & L

The numbers 6 anc 4 in the index refer now to equations ( € )

and { 4 ) and not inequalities. The solution of these two
equations give the wvector Lo whose components are 4 + 6,

Ey =C.:"0h { 3+4) ,(4+5 ) =72,

The respective normals of ( 4 } and { 6 } are:
} +1ard 1+ 2,
The normal of our cost vector C can vary ( teeter ) about
the point r, ( 4 + 5 ) until i* coincides with each of the
normals of ¥qguations ( 4 ) and ( 6 ;. It is required 4o stay
within these limita, We may now write:
G — 3 + E
Then
B A oG a {3+EK).[&+58)
=12'¢'5H¢

e now write C as a8 linear combination of the normals
of ( 4 ) and ( & ):

hy {1 +3 )% Ry {1+2) = 3 =+ K, whence

Ey, + hy =

hl 4 Eh2

i
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hy = b = K = 0, K = B
p e ¥ = F = D: K =5 3

Thug ¥ can vary from 3 to 6 in ite teetering abtou: r. and
still satisfy the system of constraint. The conatr&igt syatem
is satisfied for any values between the 1lixits % and &

m 2+ BFK = X2 3 B 6 ) = 4 = mEx
P = = 12 + 5(4) = 32 = original
B = = 12 + Bl 3] = 27 = nmin,

If one %hsd desired to retain both components of C cne could
write
£ % A o= B $ = 2
T o A = ofy T o e g

We shall soon generalize the process to n dimensions with
n - 1 parameters but before we de¢ that we shall do a three
variable illustrative problem.

A three dimensional problem, see Fig, 19 for its constraint
volygon, was scived where

F = 12 Il + xz + 13
1"‘5 - 5 + 1 + 2, €3, ( 5‘[ &y 7 }
GG = 12 + 1 * i EER

The normals of the index equations {( 5 ), ( 6 ), ard { 7 )
are!

B, = 5 - & - B
€y = 3 - X + 4
e = X + 1 - 1

The gemmas of these are

-1 _ L _
ey = 1 5 4
-1 _ ” i
ei = 2 3 1
ezt -~ - 3

F 5 2 o &



We next set our original cost vector ED to
¥e now write

We now write our new cost vector as a linear combination

of the normals of the equations appearing irn the optimal

index:
% e PO i

hl = g i el = 12 - 5 1{1 - 4 1{2 = 0
" =l _ "

by = €. 0" = 24 = 3 5 = 1% = 90

-1
T s - i
Cne may now state the parametric side of the original

egquation: Maximize the objective function

'p = Kl L o 2 HE

subject to the constraints

o 5K + 4K = 12
[ &) 3 + 1K, = 24
i 3) 4K + 3K, = 0

We only need to deal with eguation ( 1 ) for ( 3
poesitive valuee of
2 ) are greater

gatisfied for all
axial intercepts of (

1 3
] a3
and ¥, and all the
han‘thg corrseponding

ones of ( 1 ). 7The axial vertices of { 1 |} are
(K, X} = (0 3)
(K, K, ) = (2.4, 0}
p(0, 3 ) = 6
4%, 1 9
pl(2.4,0) = 2.4

T4



P = 60 4 p = 60 + 6 = £6 = new max.
EF = 60 + p = 60 + 3 = €% = original mex.
F = 60 + P = 60 + 2.4 = 62.4 = min.

o

All points on AB or withir the triangle CAE are acceptable
peints ., They make sll h, positive or make the cost plane teeter
on Yhe point R0 without éutting the constraint polyhedron.

We polnt out that we heve gained & new improved maximum
by this teetering of the cost plane on the ortimum point E..
This iz significant in thst one can adjust producticn achednles
to fit any cost numbers inside triangle CAE inclusive, This
is guite an advantege and convenience. It points out that para-
metric linear programming is far more general than the usual
linear programming.

2 The Gamma Theorem of Polarization

One may I{ind the equations cf constraint for the new ob-
jective function p from the theory of polarization. The thrse
nelghboring points to EG are El, EE' &ns ﬁj:
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E1 = T o+ 04 0+ 3

RE = £ -+ & + &

33 = 5 4+ 0O + 1.25

P = E{j‘ C = E-':" g Kl + 2 KE,

We now reclace HG by Ry By, 33 angd get:

36 + of ky & 3K “ P
8 + 6 Ky + f K, £ F
60 + 0K, =+ 1.25 K, £ 7

b

since each of the points 35 is on the near
side of the cost plane thra BE.7 Subtracting (2 )
(3 )and ( &) from { 1 ) we get:

3K O+ 1E = 24

; 2 & o
5 Kl + 4 ¥, = 12
4K, + 3K, =2 o)

These last tkree equatiocns are the same az those
obtained from ancther wviewpoint,

The theory of Polsrizeticr is a powerful tool for
finding the new equaltions of constraint In para-
metric lineer programeing.

One can also use my unique 7 theorem tc accomplish
the same end. The Polerization 4nd and 7 theorems
corifirm eachother, %We list belew some options for C:

C = 1z + Q =+ 3

C = 12 + 2.4 + 0

E = 12 + 0,2 + 2.7%

C = 12 + 0.3 + 2.625
C = 12 + O + 2.50

B = 3I2 % 1 + 1.75

g = 12 + 2 + 0,50

€ = 12 #+ 2.4 %0
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The range of Kl iz from O to 2,4 and Shat of KE G o 9%

Suppose that the objectivs funciion te be maxed is

F

L)

[

e

a e

1

GD' EG

Cl B GE‘

oy 4+ X

0+ K o+
2 Iy

GO' RG = \

Cl. HG + K

We then mzximize :

ki P

Suppose now that the normels of the n equations in the
index of ED are

We now write

) h,

-

®
-

a
]|
ks

i e
®z1 T %
€n1 v ©n2
+ hE e? +

fronm which we obtzin:

is the recivrocal of e_, ard g + ic the goxma vector of
the normal j.in the index of IR,
the denominators in the iast ejuation we can just use the

gammas.

i

CD ; El =
-1
oty o

g e

4|
KE *’ a F * 0 KI:_l
Cl + K ) Eﬂ =
R':-" = Cl. -\-':I + P-

+ & eln

L k €o

+ " - EI::]-
L B B hn en ="- GC‘
el (8 + E) =

=1 . =3

cl * El .5*': ¥ ﬂl = D
¥ )= Gl_ egl B K.eEl =
¥ )= C, . egl Ee K.E;l =

Sirce we do not need

T
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We czn now pose the protlem: Maximize the objective funciion
p s F_D ™ K

subject to the gystem of k consiraints above. The k con-
straint parameters keep the new cost vectoer C teelering
about the maximum point E~ They restraip the normal of C
within the polyhedrsl ang?a formed By the normals ej.

Thiz teelering of the cost plane about the max. point =,
with ite normal restrained within a given wnolyhedral angle
iz the Cardinal Princirle of Parameiris linear programcing
in fhe styling of Futaiisr Geomelbry,

We redo the two dimensional problem Iast solved where

RC‘ = 4 =+ <
CG = 3 - 4
El = 1 -+ 1
[ = = 1 - E
i
eil & w o
S,
EE = L + -k
e = O, e ow B E B o=@
i L oy = ],
KI = E
S -
By o= Bgalgos wmE oAk 8o g
El = 3
C = ¢ + K = 3 + 6 = F {1 + 2)

¢ = C + K = + 5 = ALE + X3

Ll

These last two expressions show us that the teetering
plane in its limits colncides with e, and e, which it should
if it is not to cut the constraint p%lyhedrgn. We now gzetb

?155‘30:(34-3)_['!4-5:': e = min
By = C.Ry =(3 + 4).(4 + 5) = I -orig. max,
By = €. Ry =03 + 6). {2+ 5} = 42 =max
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e first wariant normal of the testering plane

C = 3 + 6 = 3{(1 + 2)
coineides with the fixed mormel e, = ( 1 + 2 ). The
second wvariant normal of the teeteﬁing plane,in the limit,
coincides with the rormal e, = { T + I ¥

& = F + 3 = 3L =+ 13,

The fized normals are those of eguaticns in the index, These
are gignificant results., The K value varies from 3 %o 6. We
now redo the third order equation:

By = 3 + L 4+ 2
CD = g5 T T + 1
CG = Ul + Fy o+ KE
e = K + & - 8
£y, =® L I F % 4
€ = 1 + il = 1
eIl = 1 - 5 = 4
- & 2 - 5 = 1
et =0 + 4 + 3

F = PD,CD = RD. 'Ul + EG. K = 394 Cl + P
-1
hl = e GO = O
hy = as O & B
2T g = e
o ok T
h5 &= 53 . CD a2 D
12 - 5K - 4K % 0
24 - K, - 1K =2 0

0 + ¢ X £ 3 KE a2 0



From the last three equations we obtain:

(1) 5K, =+ 4K, = 12
(. &) 3K + 1K, = 28
BT 4K+ 3K, = 0

Fquation ( 3 ) is satisfied for all positive values of
K, and ¥,; and equation ( 2 ) hae all its axial intercepts
larger tgan the corresvonding of equation ( 1 ). Thus we
only have to deal with equation ( 1 ). W, now maximize

row RgeK = E 2 X

1 +

subject to the constraint { 1 ). There are only two points,
vertices, cn [ 1 } They are:

(5, K ) = (2.4, 0)
(KI*KE} = {{}-, 5]
p (2.4,0) = 2.4
p (0 ) = &

L}
i

RaeC = (5 + 1T + 2}.(12 + 2.4 + 0 )=#62,4min

P=Rpl=(5 + 1 =+ s T i T TS Y . W T

i

P=RuC=(5 +# 1 + 2).(12 + 0 + 3 )= 66 new max.

See the configwration bhelow.
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Delow is & list of options for the teetering plane;
( 1 = 1

2 a )
( 0.2 + 2475 )
[ 043+ 2,625 )
{ 0.4 + I
{1 + L% |
{ 2 + 0.50 )

411 points on the perimeter or within the area CQABO are
acceptable options.

The Gamme Theorem Of Polsrizatior cam be used fto
cheek the H Theorem, and vice versa.

g The H Theorsam

The E Theorem atates that the teetering cost plane thru
the optimum point R, canncot cut the constrainf polyhedron as
long as its normal g is governed by the expression:

{ 2. hie; + hoe, + ...he = C
where the &, are the normals to the faces of the planes whose
numbers occﬁr in the index for RG while all h, are positive.

This H theorem ie cne of the foundations for n-1 para-
meter linear programming for an n dimensional space.

Such does not seem hitherto to be known in the literature.
we shall prove it. We first make the truth of it plauvsible
with a simple two dimensional diagram. The present diagram
refers to & max. problem in two dimensions, See the sketch
for Fig. 235 helow. The theorém forces the new coet plane
C to teeter about the maximum point E. without cutting the
original polyhedron of constraint. Cng will see ites beauty
and power as we procesd.



Fig. 23

Let lines a and ® be the two lines of a volygon of constralint
meeting in the optimal poin% R, and let LM be the cost plane
thru R, and C ite normal from goint G, Let e, and e, be the
narmalg to & and b respectively. As drawn, ofle sses that C
liea between e and e, end we may write

i 29 c = hy ey, + h, e,

where h, and h, are both positive. Now rotate LM about E, till
it pass%s inside the pelygon as at L, If, then C, 1fs nn?mal,
may hbe written

=
& X

showing that as leng as it stays inside the hatched angle a b
ne change in the sign of h occurs,

This is & simple wisual illustration of the ¥ theorem,
Its truth is very plausible and even self evident for this
simple case. For thred dimensions we write:

(4 ) ¢ = hy e + hye, ; 5 €

whkere C is the normal of the cost plane thru R., determined
by the three plares whose ROrmals are gy, €5, gnd e, whose
numbers numbers occur in the index of Rj. 2

We shall row show that the plane C does not cut the face

Bz



e, between the lines of intersection of planes gy 4 B and &, 93
wiiech lines form fzee El' Z

The line of intersection of plene C with face ey im:

B ) eq x C

hl By X El + hg ey b4 EE + 1-15 el X &3

_e?

= Bl TE_ . - e
2 i By g VR

We note that the last expressior is the eguation of a line which
is oputside the angle made by the lines

- €2 ang g )

which form face e,. Note also that e, X e, = - €, X €, = - g 2
end that is the réasonm for the minus Bign Ir eg., { 5 ) above. We
gleo note that e, x o 0 since g,s are column cofactors and

in this case detbrminints with two rows the sarme. This is so in

r. dimensions. Equetion { 5 ) saye that plane C does not cut face

e. when the h, are positive, Keep all e,s 1n cyclic order for all
d}mensions. THis is a convenience. In the same way one can show that
the cost plane C does not cut face e, nor € and thus does not cut
the polyhedron of cinstraint as lorg as the hj ere 211 positive,

For 4 dimensiona we write:
i ¢ = hl ey + hE 8y + h3 ey + B ey

In 4 dimercsions the plane C will cut any face ey in three lines.
For fzece B, one of these lines is :

(20 legxeyx0) =hy gy, Tesnpy ) +hleg xeyxey)
= h3 (&g x By TBx ¥ 4 h4 { By X €5 X 8, .
= (0) + hy (0)+hgg *-n g” %
= hy g % =~ h, & °3
(e, xe,xe, ) =-(e, xe e, } == g €2

Bqustion { 2 ) showes {hat cne of the ‘hree lines of plane C cutting
face e, pesses thru the complement of twe of the three lines

-

R B ™ v

end £

whieh form face ¢,. 4 like rosult can be shown for the other two lines
¢
L}

of plane € cutting face ;. Those lines are 8 X x o) sand

i |
B
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( e; x 8, xC ). A like result cen be shown for faces e, , € and e,.
The Generalizetion and thus the

b3 ™ haowa

=1

1s immediate:

i G:hlﬂ1+heg+h3e3¢.....he.

2 B o 8

.:'.I " LI -
AL S LPRE Y = BT & Bt B
-g - g
h = &l .._-‘ = Tr
n-1 8 ° b, & "ol
Egep in mind the cyclic order of the vectors e §ng and

that any product with a repeat factor is 0. A det r"iﬁant witE two
equal rowe is O. Bauetiom { 2 ) above shows that “he hyper-plzne C
doea not cut face e.between the lines forming 1ts face, A like result
holés for the otherlines of C cuttiﬁg face e.., A like result can be
sheown for the other faces e, ... Thus b¢%ne € does rot cut the
wplvhedron of constraint ze long ag the P are pogitive.

T™e 5 Treorem

iz a vowerful tool for the complete solution of parametric linear
programming.,

The I Tresrsm

is a ploneering piece of werk and we take 2 bit of pride in its
fashicning.

Farametric linear programming is more general than ordinary
linear programming. One can shape i1 to fit various pricing and
scheduling to suiil many regquirements.

Polarvizatioce
and the
Theoren
It will be shown that the ecustions of consiraint for a para-

metric system can be constructed als by the gamma theorem due
te Poiarisation discussed in an earlier chapter in this book,

The H ané theorems ecan serve as a chech on each other
for each should give the same equations of constraint.

Ed
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We now find the equa*ions of constraint by the theorem of
Parmatpes o,

From sclving the original problem we obtein the optimal vector R
We alzo write

GD = GI. + CE - ':'3 = e [:n
Rl RE 33 Rn

= : i I & =
where UO iz the original cost vector and Rqs Epoownn RR T

rearest neighbors to K. on the originel polyhedron of constraint, We
now write aur cost vector as:

g o= 01 <+ ¥
E = 0 + Kl + EE s R anl'
i P = Ry.L(6 + KJ,

Ascuming a maximization in the original problem we replace Rﬂ by

Biy By v R, and get by Poosrizaticus
¢ 2] By « { € + E) = P
() Rn e € Cl + K} = P
Subtracting { I ), ( 2}, <« { m ) from the ( 1 ) above we get
/ 3 a: 'H r M g
{n+1) ( R, B, ¥ ad ¢, + K) =
o — I_ T
(E'EJ ER{} RE:I'[LCE__'- v G
{2n ) ( Ry - B ) . (c; « K) = 0.

We thus end up with n eguations of constraint in n - 1 unknowns
gince K has r - 1 components.

For the three dimensional problem solved on pages 41 to 43 we ob-
tained:

RD = 5 % 1 + Z
Rl = 5 + 0O + 1 .25

=K i
and if one had contirued the table and found g ~ and g ® the Other

neighbors 52 and R3 would have been found,

R 4 ¥ 6 ¥ 6

2 S

Bq

it

T & 4 % 3



Then we have

Ry = Ry = 0 + 1 + 0.75 = (0 + 4 + 3)/4

By = B = 1 » 5 - 4

RD - H3 = 2 - 3 - 1 ., %We can then writw:
(0 + 4 + 3).(12 + K + K ] = 0 + 4K + 3EK;=0
{ T~ 5 - & J.(12 + § + %) =12 -~ 53K - 4K, =«0
( 2= 3 % V022 ¢+ 5 ¥ X )] “8f <« 3F = 1F«0

from which
¥ =
5] K1 + 4 K, 12

K o+
1K +

These last Sthree eguations are the same as those given by the

L B
L
r
i L]
P
o QR N

E MThecoren
Some options are recorded on page 81 in section 2.

One can irprove the derivation of the last get of constraint
eguations. The n neighboring points to RG may be written:

: -1
Rl = E'D + ‘I‘.‘.l ‘i
bp & g W Ny &
- .F. -k @

Hn o RG T &

Suppose we have altered our cost vector GO to C parametrically then
we may write:

Py = Bk RD

P o= B .. Rl = 8.1 RD + tl g—l )

p; = 0By = Co(By # 456" )
-n

P, = i Rn = € . ( RG + tn g )

Each p% is smaller than pg gince in max. proklems R, ie on the near
u

side of the cost plane th fys Subtracting each pg from p, we get:
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-..C.gu']'
-

i

-t 'D" 3 g

i}
o O O

SO, B &

5
#

the t, &ll being positive were cancelled from the equations. In min.
problems we only have to change signs in the last set getting:

0.gt = 0
C.E6°% = 0O
B oo g2 e ol

These last two sets of constraint equations constitute the
Theorsi

which is the result of Folerizstian,

The @ and [ Theorems give the same constraint systex for the

parametric cbjective function. Cn the followlng page are sketches for
max, and min, Pelarizeticn,

For min.

1
&

-
1
i

Fig. 24

4
Fig. 25
A11 gemmas leave R The ¥ ané I theorems offer a complete so-

lution for parametric ginear programming problems of n dimensions. C
testers about RG according to parameters chosen in Cg.
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