Ckapter 8.
zes The Transportation Frotlem

The Trancporistion Problem iz of considerable interest to commercé
end industry and much time and effort have been devoted to formulating
end efficiently eolving the related system of equations.

Ar. inspeection of the 1iterature or the transvortation problem sséms
to inficete that the mos*t popular method of scoluticn of the associated
system of equations is an applicatior of the simplex method or a varia-
tion of it. Mary ingenious solutions, using conventicnal mathematics,
have been devised to dezl with the system of equations =serving as con-
straints in the transportstion problem.

Mutation Geometry does rnot need reny theorems in order to deal
with the transvortation problem and its variants such as npersonell
assignmenta, traveling salesman , ete,

The transportation problem i
{1t is fermulated by =z system of 1
obisctive function to be minimize

=

§ a linear programming preblem in that
inear eguaticns a3 constraints with an
é

Formulation of the Equations of Ceonstraint for the Transportation
Problem,

& product is to be transported in amounts 8., Bas sa. B,
S vy oo ol w omd 1 erd 4 'é i Ey,
tively Trom each of m shipping origins and recelved in amounts b, .. D
renpectively by n shipning destinations. The gost ol transportiﬁg 2 uhit
amourt from *he i th origin te the J th destination is 011 and is assumed
imown for all combinstions of i and j. o

ol

TESpEE-

1t is required to determine the amount x,. to be trarsported over
all routes [ i, 7 ) irn order to minimize the t%gal cost of the transpor-
taticn.,

For the develornement of the eguations of constraint we refer to the
diagram below where x,. is the amount transported from origin i to des-
tination j. The total transported from origin i is a.and the total re-
ceived at destinatiem j is b.. =
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We defire & vector r as:
(X 3§ r = ( %4, Xy eeee X )

mn

and a cost vector C as:

2 3 = o Y

Wi b (g0 Cypy ween Cpp
+her. the total coet of the trarnsporiation i=:

3 } b = T

—

end we have the following relations from the table above:

(4 ) x5 = s, (4 = 1,2, «.i m)

i - e - =

[ 5 3 Tig = EJ{ F o= By wws B )

g 8 + 8Byt a.By = by 4+ by + ... By

Egquation ( & ) states *that the sum sert is equal to tke sum received.
9 q

Trom =he *able cne sesez that there are mn variables m + n ecu-

i

atiors. df consiraint represented in (4 ) and ( 5 ).

I% may be shown that the m + n ejguations sre redundart, heving
one more equetions than required for the system to e indeperdent,
which meanz *hat one of the eguations can be omitted or that one of
tke equations may be written as & linear combination of the others. In
that csge we havem + r = 1 independent eguations., Any one of the
equations may be omitteld leaving an irdependert system, we illustrate
tre deperdent system with = simple case of a 2 x 3 table and one mey
use the sarme scheme to show the iruth of it for a higher number of
variables, The 2 x 5 table and its equations are:

I % =
o e o o R VL R W Sy e Mg o= By
Xgh, Fag gy 23 {8 Xy + Ty + Xzg = 85
h B L+ \

( ig } sz + 122 — 52

( y 24

e b 113 + KEE - bﬁ

By actual adding ard subtracting one chtains:

{7y = {9 « (10} + {(11) = (8 ): In a similar vay
ore can shtow & like result for = + 1 eguations. There is aluways



one redundant equation and so one equation ie to be omitted in order
for the system tc be independent, One then has = + 2 - 1 inde-
pendent wgquations 2nd mn variables. Form = 2, n = 7 we have

mn =6 variablea sand

m + n = 1 = 4 equstions.

Ir order to solve & system of equations one must have as many equ-
ations as unknowns. Most high school students know this and it needs no
proocf, One might give a Heaviside procf: { " it works " ). We borrow
two equations from the set of inequalities

'.!:ij- = o

and then we have six eguations and six unkrowns. It makes only & slight
difference as to which two we choose. When the cost wector C is numeri-
cally one will see to meke the choice advantageocusly so that only a few
iterations are required t¢ obtain the proper r which will minimize ike
objective furction F.

When one solves the six equations in six unkrowns one gets a point
represented by & vector r with six components some of which may be ne-
gative, Vectors with negative components are unaceptable and have to be
corrected till all components are pogitive. It will be shown later how
to do this,

The syasten of constraints represents a hyper-convex vpolyhedron .
The vertices of this polyhedron are of prime importance to us. Cne

of them gives the objective function its minimum value. We have to find
that particular vertex.

d. ZFolarizing the =lane snd Space; :nalogy amd Generalization.
If & point lies on a given line its equation may be written:

£ 2.3 a.r = b

where b 18 a positive scalar and a is a vector whose directicon ie
along the normal to the given line and r is a vector from the origin
to any point of the given line.

If any point is on the far side of the given line from the origin
oné may write the ineguality:

{ 2} a.r & u.

1f the point is on the near side of the line to the origin one
may write the ineouality:

o 85 . % b,



L sdmilar stetement is true ghout the plane nel-ricp= =r ae,
A hyper plane polarizes a hyrver space.

The notions of peolarization are very usful in linear programming
in the styling of the Few Science of Mutation Geometry.

In high school geometry ore learns that two planes intersect in a
straight line. One can say thie in another way: two plsnes in 2 dimen-
sions intersect in a straight line in a space of % dimensions, 4As a
generalization of this we say that r-1 planes in n-1 dimernsions inter-
gect in a straight lire in a space of n dimenaions.

%. ( Gammg ) Vectors
We have called the line of intersection of n - 1 hyper planes in
a space of n dimensione a(gammal Vector. Notice that tke inter-
section of two ordinary plenes is a particular case of a vector,
The Yector is a construct of the ¥ew Science of Mutation Geom.

The solution of n equations in r unknowns gives a point; stated
differently n hyperplanes in n unknowns determine a point.

Let
ST 4 .r = A
{2 ) b.r = B
£33 & > = 0
L4 g F = T
(=n ) s

be the equatione of n hyperplanes in 1 unknowns where a, b, ....

are their normals, One can compute n ftom the list by omitting
one equation in tern from the 1ist. They are:

where the exponents indicate the eguation omitted. This means that n
gammas leave each point irn n dimensional suace. This is the CARLZIZL
DETUUIFLE in linear programming in the styling of the Yew Science of
Mutation Geometry.

Tzke note that:
=i 3 L=t 1]
g, Y = 8.0 = 8.3 = se0a .y =
since each product is a determinsnt with %wo rows the same. A like
resul®t can be written for each of the other gamma, The gamma vectors

vlay & significart role in +the new foundation of linear programming
ir the new styling of Muiation Geomeiry.

9T



The gamms vectors short eircuit the clésr simplex formulation of
linear programming with its vexations of slack varisbles, bhases, ex-
rangions, degeneracy, cyccling, e%c; & slight bit of baggage to cast
57 2

The 7 vectors are the edzes of the faces of the hyper-polyhedrons

of the constraint system. ¥We have devised a rumber of ways to efficien-
tly compute them for any system of consiraints,

For an abstract of a paper on the Yew Ecience cof Mutation Geometry,
presented hefore the Chio Section of the Mathematical Assceociation of
America, meeting at Fianmi University ir Oxford, Chio; see the Menthly
Tor Aug - Sept. 1959, p=ge 645,

IT we solve any n of the eguations of constraint ir n unknowns we
ghall ge% a point. Le* r, he the vector reoresenting this peint. If all
the components of this VgCtGF are positive and the vector satisfies the
whole system of constraints we shall call the point so obteired a kull
point., The point represents a vertex of the polyhedron of ecnstraint.
If the vector has all 1ts components positive but does not satisfy =2ll
the equations of constraint of if it has one or more negative compo-
nerts we shall eall the moirt an shull point. In that case it does not
represent a vertex of the polyhedron of constraint. By means of our
gamma vectors one may go from a kull point to a hull point. We shall
show several ways of getting or a vertex of the polyhedren, Once on the
hull the gamma vectors will sample the other vertices for the cortimum
ane of them,

Let us now suppese thal we have, by some means, found & a vector r.
whick satisfies the system in diagram 2€. Ve can then get sncther solu-
tlon:

s TO + t’y

where t 15 & positive scaler and gamma{'j , is an orthovector of n - 1
of tke normals of the planes determining the point r,. Put the last eq-
uatior into the system of conétreints in tahle 26 and getthe table of
gamra! J ) constraints : -
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We have devised a number of ways of computing the - Cne easy
way is to solve n -~ 1 of the gamma{ ) squations in the gamma table
for the verious gammal ) components in terms of & chosen cimyonernt
then one will get some such relation as:

{ 1 * CRC | ‘D + = w — :I- CCE Y }

i

where is the chosen compvonent. The sign of the iz at the
disposal of the one doing the computing. Another wey is to take the
column cofactors of n - 1 of the equations of constraint wkich give
the solution under consideration., Another way is by inspection of a
gamma ) table, We shell dillustrate some of these schemes irn the
working of illustrative problems,

Froblem. Minimize the objective
e € .&
where ¢ isg given »y +the table
o = €17 * €12 1t ©13 = N
€aq + Chy + c23 4 + 1 =+ &
and r iz glven by the table

T3

T = Kll s+ 111? =+ 113 1%
le + XEE + 123 1A
7 g o

_ : . B
= 3&1 4 3;2 + 1% 5
-+ 3 \
7 aal - ?/35 C

0 o o

-1/ "J} -+ W-J'a."i' B/J“!."‘{‘\J/Lrﬂ-!- j"k'i-—i- 3’:3._'1

From the gamma table we write the equations:

?;1 +-};2 ?#

+ 23 = 0
Tﬁll + ?él = 2
fﬁﬂlE +-3;2 = J
—3/15 +‘3’23 = 0
Setting gamma ¢ and solving the remaining ones in
terms of 9 | chaseﬁgar“ifrerly ) one zets:

g



T = — Py

Yo = — ?h,:

Tz Vi

s = 0 . Chosers

b= Ful-t41404)=140)

¥e arbitrarily chooae x 5 = Xgy = 0 and solve the four re-
maining eguations and ge%.

Tq = 7T + 9 + 8 + 14 + 0 + 0,

The sign of the gamma i=s a%t our disposal. We write it aa:
P= [— | a=0=t={| 40

We multicly '5 by t ani add it to Ty and get

oy o+ t ﬁ

whence F = T w  TT cwo oy

[ @' Y { 9w Y & Bl 3 < Yar § 0

T

We want F to be as small ag possible consistent with r heving
no negative components. One sees that t has to e 9 and so

P = 77 - 409 ) T - 3 = 41 = Hia,

ry = 2 + 0O + 8 4+ 5 <+ 0 a4 0,

ry = 2 o @& 15 ] = =1 1 0 G
5 g 0 14 1 ="F g €
T a a W o & 2
D= 1 Gei B
! P | 0 - X [}
L6 0 i

From the first gamnma we get:
r, = Ty o+ b 1 ﬂ = { P=% Y t+s8+ (0%t I L9t ) ¥ 04
= 0 oyrs = 4L + £ Ly
-4
% = 0, then r, = ry and P? = A1,

Yrom the second gamma we get r5 = Ty and P._3 = 47,
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From the second gamma we get rﬁ =
the neighbors of r, give a larger or egua
of ry =

T
11

Pl = c " 1"1 = 41 = Min,
?2 = ¢ . r, = 41
Pd_ﬁ = G = '.I‘."§ = ‘!1-1 .

whl
For the calculation of gamma ons, fﬁ y WE
ry and for the first O we write 1 and fill in
t%e gamma table with a o corresponding to the
one calculates the other numbers in the gamma
the conatraints on its edges. For the gamma,

aric %
value of“F

E 41, Thues all

than than that

look at the zeroes in

the other spaces in

0O in the z, table., Then

table in afreement with
“*, one simply inter-

changes the 1 and 0 ané proceeds as in the first case., Cne does not

have to do much calculating.
the min ¥ector by edding to r

positive component of T whicﬁ lies ¢poosite

We now solve a2 preblem with 12 unknowns,

(1) 1+ 2 3 + 4
C = 4+ 3 + 2 + 0 =
O+ 2 4+ 2 + 1
Find the min. of
F = C r
r o= (x5 + X, + . X34 )
under the constraint system:
11 B Mz R
b X SR &
(& 22 wpp T2% fo %4 4 2 0
Xz Xzp ¥z Fyy -
In { 2 ) we have & equations and 12 unknowns

We now must choose 6 ( % + 4 1

—_—

X
kfitwne which can be solved.

For the corstrveticn of our gamma vectors
ecuations in mrn unknowns.

termz of mn = 1

)

solution
rumber of zeroces chosemn.

gammas 4 . The gamma vec
progremming from the Mutat

e
There will be 6 gammas D for each
is the zame as the
mzin fixed for all
role in all linear

) out of the
to be O or we could choose € equations from the 12
. to go with the 8ix equations making 12 ecuations in 12 un-

A Jittle observation shows that one gets
the product of the gamma by the smallest

- 1 in the gamma,
Tiwven the ecost matrix

xl: Y x?ﬂ].
12 unknowns
inequalities

s Ehall ERLEE En

+ The number of gammas
6 of the egquations re-
tors play a significant
ior Geom. Viewpcint,
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Making x,5 = X, = X;s = Hopn =X = E = 0 we gat the fzable
table of valugs: 17 ¢l 2 24 22
g% ty, =0 6 0 0 & Tos L 34
o) 0 a 0 2
A 4] O & 1o
il =) F o]

Thais teble of vzlues iz degernerate in thet it has 8 zeroes when
only 6 are needed. Looking at the tzble of C values we see that the
zmallest values corresponding to Q0,8 is C;, ani C,.. We put a cross
ingide tkhese 0,s and call them floating 2BToes sinde one can constr-
uct gzmma veciors only for mn - 1 in mn unknowna. Cne can write the
gamma table at sight.

If any J has 2 negative comporent corresvonding to a zero in
the components of r, that is said to be inactive and is discad-
gd for it would givé negative components irn the resulting r.

We note glso that when ore of the equations of ineguality is
omitted it will have a coefficlent of 1 before it as 1 i 0
and the resulting 7 must meke 2 pozitive angle = g0 with this

vector from which it is departing. OUne does not cepart from from
floating vectors,

Each ﬂf ro¥w and colupn will heve either 411 g,8 o + 1, or -'1.
One needs Lo write down only the + 1 and the - 1 &nd no zeroces. ¥We
note also that
Th + £ 75

c.rl:PG+tﬂ.rﬁ

it

ky

g

Since we wank P, 1o be as small nr smaller then P, ther is no
noint in degling wi%h 4 whose preduct C . Y is +. Yse only those
whose product is O or negative. From the r, table we compute the
follewing g %

T e S S B . .
47" = C tMnattiye
) |
RN N

il Mgttty e
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e e
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We see from the ’5ﬂathat T is the orily one we need %to deal
with. ¥e smee from the table of r, that 6-&? the smallest component
onposite whick a negative componént of 3 ¥ falls, We multirly 3 1o
by 6 and add to Ty

i
T = ¥5 4, &7
—
I: ¥ 0 = C & TD + 5 G a ’j
il =] [ = 3
7] = lD + &£ 1! 1
P = 34 - £ = 28 = miv
- |
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The answer is a degenerate minimum with T zerces where we only
need 6 in the solution. It satisfies all the boundary conditions.

In caleulating the gemmas it is always advamtagecus to fill in
the zerges first . For example, if any row or column has all zeroces
but one in r. then in the gamma that row or column has all zeroces.
Cne can then easily see how to place the + 1 and the - 1, Heed this
for it apeeds the derivation of the gemmas.

4 A Tzeful Idea

In the transportation oroblem it is convenient to write down a
first solution at sight. If we have m shipping origins and n desti-
rations the number of unknowns =x,. is mn. The number of indspengent
equations is m + n - 1, The ﬂé of zeroes to be chosen is U:

J = mm-{m+n-1) = {(m-1Ha=1)

It iz & very important and useful expression. 1t means that we
pan put zerpes in the first m - 1 rows up to the nth column and hl

¥
hg, | bn_ er Ko in tke last row or mth row. The last column
will éave 27 &2, - am some w Mges wvhere

B +

* = B = ay

-+ ¥ g
mn n 2 e 508

=5.m-["r}l+ -bz-l-... bﬂ-’l)o

gnd the resulting expressicn is a first solution., It mey have 1 ne-
gative component but we have shown how to deal with such solutions
with a gamma attack. Other interpretations can be given to the U
expression above. Some give a2ll pesitive component Teasible initial
golutions. Some examples follow. According to the U formula the so-
lution of the problem

X
1] %] X

!

= ——
Xop| Zopl Fos | 8o |1k rp =10 10 &y i
by | %5 | bs B [F8 108 wums =
by by |os
Herw m =2, m= 3, gy 2 1, @mesilow 2

This means 1 row with two zerces in it. Zee the diasgram above.

"j-“‘ B ‘__JJ'_JL
;S? Q 19 [ i@ ‘_E Rk D | - ’L;
T E?f "a‘ 1‘r-d = ﬂ ‘ o _q "'i j "
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=il
One can multiply 7 by any positive number from 2 to ¥ and add
it to ry and get fessible solutions. Multiply 7" by t and 2dd to ry
end get? '

Pl bl
» m Py ok R 7 = 2t + 0 +{10~-%)+(7T=-1%]
+ o +(t-2].
P = c I - 2 t + -jFllr#
Cur objective function will be the smallest when t is the smallest
consistent with r having sll positive components . Here t = 2 and
F = & % 37 = 41 = HNipimum.

S
One cen also get feasible solutions by maltiplying ﬁdrby posi-
tive numbers from 2 10 ¢ inclusive. This is left for the students.
Tt will be fun to watch the merch of the gammas. Have fun. There
are exciting discoveries to be made. Watch for them. Once having a
famgible solution one can then be off %o the races with the march
of the gammasz.

We mow reintreprete the U formula for the number of zerces o ve
chosen.

7 w b & EYiwn o= i
Jeroes may be shifted from the { m - 1 ) row to the m th row by

renlacing them by the correspending .. We do an Illustrative eX~
ample. ‘ ]

by :fal - By T 8y % | ! 3 10
By 8o =By Ry | e b 491 50 7%
B By | 719 | &

r. iz 2 feesible solution with all positive components, One could
a?sa get another feasible solution bty interchanging rows with b,

and b, . This is 1aft for the students., Some solutions of this type
give fiegative components in the resulting r vector but this fces not
metter in the end because the gammas dispose of them as we haze shown.

If the negative component was large one might not be able to cor-
rect the solution with one *¥ addition., We do an example:

D E 1.1
&b 3 2 2 i P
Raos Lo e 2 1
m’/“”’ +=“/ ""1 7 ":_""F L
. ; - - - 3
i =T T : Add 2% and get
T 1 l N
T 3 2 L5 = i
~ T30 |2 =3 |7 1y =7+ 37
3 v = 0 z 1
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r., iz an all positive component feamsible sclution . It eatisfies
the bbundary conditions., One notices that the choices of our gam=-
mags can materially hasten the elimination of a negative component. In
the last scheme there can never be more than 1 negative component.
There are naturelly times when there are no negative comrponents, in
the initial solution. For example:
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iz an =811 positive component initial feasible solution. One
can Egﬂﬂ write down the 8 gammas and with a given coeost metrix test
whether it is the min. vector.

The last scheme for finding an initial soluticn does not depend
on the wvalues of the G.1 in the cost matriz and for that reason the
gsolution maey be far frof/the min. scoluticn and thus would rejquire
more computation than for 2 solution which wae initislly near the min.

solution.

B Material Allocztions

That any acheme for caleulstion an initial sclution, which dces
not depend on the ., would produce a solution near the min., is
improbable. It is a ﬁitter of oddes: onlu a few solutions neaf the
min and more noet so near. We shall slleocate the material by rows.

Let C, . be the minimum eIement in the firat row. We set Xy
iF a, = J or Xy a = . « In the first éase
we heve allacsted all {he mnté“lal inTrow nné gnd we change a, to 0O
and replace b, by b. We then go to the seccnd TGW a¥éd re-
peat the pfoceass. ﬂ the s%ccnd case we raplece a - b. and
replace b, by U. Using this scheme we find an ini%ial stlution’for
the fcllaw;ng problem,

e o= lalal sl 3] 3 |
2| 2 2
o) &1 3] 2| 2 N
o= (11 C]C1 01011 P = CG.1y = 27
clol1lela]3]
Yirlip | %] 4.1 8
ke 1 R IR U B

We now write down the 8 gammas from r To avoid drawing new die-
grams we write the coordinates where fhe 1 and - 1 are located. Then

P
BLY
Fr = 18 floa 5 - 32 = 1
e 13- 23~ 11 + & = 2
johm1d = J4 4+ T2 o~ 11 - P
;a-..-;w_- 5 - 11 + 31 - 3% = il
A Mg 21~ Il = %1 % 15 = 2
~tu 272 = F2 -~ 26 ¢ 7IB = 0
T o4t = HM = 26 + 35 = i
ﬁﬁ L e 33 - 23 = 35 + 25 = = 1
~t
T is the only useful gemmae in the & computed gammas for rye Then
ry = T, + T i
Pl = 0., L R I C .7 = 22 -1 = 26. = in,

The reason 26 is the minimum is that 21l the gammas of ry aae
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either inactive ( give negative components in the resulting r | or

give positive preauct-s with C. The tzbular form for Ty is written
below,

r o= j’Ll alole ol
ENER
L4 41 (3 13 |% @
LS 1l 4% 14

-%3
As a2 model, we now show in detsil how to compute the 3  from the
r table, We first replace the 0 in the 33 sguare by & 1 then omit
af1l other numbers in the table tui the O s. one then replaces the red
boundary numbers Y%y red zercee. Cne then fills in the tsble with either
l,8, 0,8 or - 1,8 to fit the boundary conditioms, One can do it at sight.
The skeletor table below is the starting form. The second table is the

table filled in. It is the required 1{*3“. £1]1 gamma,s are calculated
in this manner for the present. '

i
| Tololeale € s
P e 5; 1 li L Skeletzl &
T T N
. b | L5
- 2 |
O o a9
|
ololejo s
el l—t 1.5 Filled in #
Pt o oi 1 | O
W-EW AE-BE

Cne can calculate gamma vectors from any point vector r in the
same way. 0Une can calculzte 8 of them from the new Ty It will be
interesting rractice for the student and then to f};ﬁ new vectors
from the old vectors. Note that r. = r + ¥, 3By means of
the gammae one can find all the neiéhbors P vertices ) of a given
r ( vertex. Then one can find their ¥ = C. r vzlues and choose
the best of ther and repeat the process. This is Linear Programming
in the styling of the New Science of Mutation Geometry. For a pre-
sentation of the New Science before *he American Matheratical Assn.
meeting at Mismi University in Oxford, Chic ; see the Monfhly for
hug- Sept page 645 ( 1959 ). The initial value r_ was caly one iter-
ation away from the min. vector r,. The allscation scheme for find-
ing an initisl solution esn be ap%rated ewiftly and efficiently. One
cnly needs a 1little practice. The garmas will do the rest.
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We have devised several schemes for computing gamma wvectors, For
completeness we derive | '“for the ry vector above in a linear fash-
ion, Most of the work is in making the diagrsm. The other 7 gammas
can be done in the same way. In practice I never do them that way when
they can be done at sight from & tabular form. See below for the com-
patation

o T e g e .
P12 13 415 i¢ GGl ihie (13 w17

P
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Feep in mind that the ﬁs is to be pervendicular to each row from
2 to 1% and have 1 in column 2 for the geamma vector must make an acute
ergle with the normsyr o the hyperplane from which it is leaving. The
gamma with 2 0 in esch component corresponding fto each 1 in lines 2 to E
satisfies the perpendicular reguirement for lines 2 to 8. (ne then goes




one then goes %o line 12 which gives the - 1 in the 12 th component
of v, We gel the O in the Bth component of ¥ ffom row 13. We
get the O in the 10th component from row 9. We get the O in the 15th
component from row 15. Finally we get the - 1 in the 1st component
from row 11. This completer <¢~'* ., It is the same as that zomputed
frorm the tabular form but not so compact and not so convenient. The
other 7 gammas can be cozmputed in like fashion., The main work here
was in the construction of the diagram. One could also compute the
gamma atove by computing the column cofackers of the remaining 14
egquations. Each component of the gamma would be a 14 by 14 determi-
nant and who wants to be punished like that when they can be writ-
ten down at sight.

The row allocations for an initial solutisr followed by a gamma
attack for a minimum mey entail the least amournt of work and that is

desirable.
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