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Hull=-Transversal S5o0lution

We state the following l11near programming problem;

Maximize the objective function;

P = g * R
= f 12 1 1 » * R
subject to:
(4 {1 4 -3 ) * R £ 10
{5} { 8 B =¥ ) xR < 15
(B} £ d =2 1.3 % R ¢ 106
(7} [ 1 =1) * R < 4

We Teave the polnt { 3 o 2 3 which has the index ( &,
2, 3 y. Any 1ine leaving the point { 3 a 0 ) must make
an gotuse angle with the normals of each hyperplane whose
eauation occurs In the Tndex of theée point ¥Ff the 11ne 18 to
stay Tnside the poelyhedron of constrainis . Thus we may
write The equation of any such T1ne as:

{8 R = (2 0 gy + £t *y g 1 i

This vector ( 2 1 3 ) was chosen semi-arbitrartly.

Hote that

which means that our equation (8)

(8) B = { 3 a gF = % *E 2 1 33

moves out ithnrough the polyhedron and not aiong 1ts surface.



T2

fio calculations were done for ( 2 1 S

Putting {B) into (4), (6), (7} we get:

E = 7711 for smallest t value.
FUT thils value of t  into {8) we get

nﬁ: { 47 7 21 Y113
Thusg % feasibly satisfl1es all the constralnt equations as
1t should. This simpliy means that % 15 ¢crossing the
feasibility hull, or polyhedron of constraint, One may test
for TocatTon when we are across:

P
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= £ 12 1 1. 3 % 47 7 2T 3411

Appropriately, We nole that %_ hit in the face of (8). If
I were dealing with a JTarge hull one mlght want To go again
across the hull Teaving the face of (6) a5 we did that of (5}
in the heginning of thi1s process. 1 think the value of P
for a point in the face of the polyhedron 15 less than that
for a vertex In that plane. It may not be s¢ and we can
investigate thls later. No matter where we fTinally stop on
the other side of thée gap we shall have to reestaplish
contact with a refinement process. For Thi1s purpose wWe snall

assume that (&) 1s tha end face.

We repeat (&6} here

{6) { 1 =3 4 3} * R < 10

The point IE. 15 a point 1n the face of (8). W& want to
moeve Tn 1ts Tace to some other place. Any 1ine In the plane

of (&) 15 perpandicular to 1ts noermal ( 1 -3 d }y. We can



write these normais to (1 =3 4 y. They are:
¢ 3 1 o3
{4 o -1)
{ @ = #3 )

We will take the first and write

(9) E =R 3 % ¢ 3 1 0
PUt this Tnto (4), (B}, (7} and get Z? = 56/21 (mintmum)

Put thitcs into R and get;

%1 R 7 271 9 + S56/21(C 3 1 FH I N
= ¢ 1185 03 14471 /231
therefore
= b
f; & RJ?

= 0 12 1 1] * { 1155 203 1347 y/f237

H_‘ 1 & point of the intersection of planes of {5} an (&)
5

which 15 gamma(s6) or;

gammai{3isy = ( 5 g -8 3
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We may now write our eguation of this 1ine as
R = R & e 28 21 ul23
T
Put this Tnte (4) and (7) and get:

E = 1
7

therefore;

R = R 1% ¢ 0 28 2137231
W }

{ 1155 231 462 ) /231

n

= 2§ 1 2} { Index =58 , &6 , 7 )
and therafore;

g = £ =* R



AT 4

= {12 1 i et S 1 2 3
= 63 { MaxTmum }
It 15 easy TLo prove that this 18 the Masimum since we have

i1ts index and thus 1ts netlghbors.

We have gone to a 76t of trouble to show 1n detall how this
simple prablem can be soived Im an alternative method. It is
net made for small problems. The scheme can oe refined. 0One
noeeds to do a lot of experiment with It to explain Tts
possibiltties. I think 9t wf111 turn out that one wiltl not
have to do much more computation for a large oroblem than for
a small ona. The main computations are wWhan one rgaches the
far side of the gulf where he has to re-gs5tablish The ganma
cennection. That has to be dane whether tae problem 15 large

or small.



