FUTATION GEOMETRY

CHAPTER I

Fundamental Ideas
1-1 Products

In Mutation Geometry the problems of the geometric world
are divided into two categories: the alpha category and the
omega category. The problems in the alpha category are assoec-
iated with the alpha products: a «b, ce d, e« £, ..iss
which are single products. Fach of the two quantities in each
of these alpha products is a directed quantity. a « b, for
example, is to be interpreted as the ordinary product of a and
the prnjaetinn of b upon a or the ordinary product of b and
the projection of a upon b. All alpha products are to be so
interpreted. See the sketch below.
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The omega products are products of the type: a +« be . d
e e f2eh .... They are double products of single alpha ;
products. The problems in the omega category are associated
with the omega type products.

in Mutation Geometry there is only one proposition. It is
called omega . It is a proposition of dissolution. It splin-
ters an omega product into the sum of two alpha porducts.

In Mutation Ceometry there is only one postulate. It is
called alpha. It is the statement of an enabling act. Its
statement is: The alpha and omega products are required to be
tampoulocallf invarianﬁ. This is interpreted to mean that
they may be ( mentally ) shifted from one local to another at
any time without altering their value.

This is a fundamental principle in Mutation Geometry.



An equational statement of the omega proposition, which
will be made plausible later, is:

L2 ) asrher = r"{ asb % bna*'}']/'E
{3 ) T A BT

Equa tion ( 3 ) is to be read: gamma (¥ ) dis the unit sym-
metric of b with respect to r. in ( 2 ) is the magnitude
of bs The magnitudes of all quantities will be written with a
zero subscript to the right, If r in ( 2 ) is unity then
equation ( 2 ) takes the very useful form:

( &) arr ber = [ a«.b 4 b.a'?'J/E

If by any means one could find the sense of ¥ in ( & )
then the sense of r could be found by bisecting the angle be-
tween b and f . See the sketch below.
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The expression in {( 3 ) is called a mutation diagram. If
we have a sum of omega preoducts as:

'|: 5 } g = a*T ber + ecsrder 1 e*T fer T eee
we may apply our omega proposition to each member and get:

(6) 8 = (ab % bae¥H)/2 + (ced ¢ dyerhil/2
tl aef § feWyl/2 - ..ne.

where our mutation diagram is now represented by:



{ % 4

Fi,i_f, . 1-3

The directions of the arrows in { 7 ) are indicative of the
alpha postulate. ¥, is the symmetric of b with respect to r.
s is the symmetric of d with respect to r. ¥ is the sym-

metric of f with respect to r.

Hereafter the ":; 3&, 3g'will be called transmutes; the
b, d, and £ .... associates.

We now show that the angle between any two transmutes is
the same as the angle between their corresponding associates.
See the sketch below.
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We take any two transmutes a s ¥,and ?a and their correspond-
ing associates b and d. Tet p be the angle between the trans-
mutes ¥ and ¥ and 8 the anzle between b and d. Let h be the
angle between d and r and r and ¥», these angles being equal
by the definition of a symmetric. The angles between b and r
and r and ¥ are equal from the definition of a symmetric.
From this last eguality we may write:

{ &) L lp ¢ h)

B & B

Llis 4 k)

2. 8 QED



This last result in { 9 ) is of immense importance in
Mutation Geometry. From this result ( in harmony with the
alpha postulate | we may now write our equation ( 6 ) as

L ) S = M § N¥i

9 o M (asb 4 c+*d 4 e.f )/2

( 12 ) N

(b8 ¢+ 4 ¢+ £%)/2

The quantities @, ¢, @, are called co-migrates.
Each transmute hangs w{t.h its associate during any mental
shifting of products in harmony with the alpha postulate.
One may locate them by means of the mutation diagram as we
shall show later. We illustrate further. We take a product
such as

h"?’m.
This may be written:
P
he Y
E )

if h makes the same angle with h as Yo makes with Ji.
This is in harmony with the alpha postulate. h«¥a and R,
will have the same value. They are tempo-locally invariant.
See the sketeh below,
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We note that in ( 10 ) there is only a single gamma 9
m%d that the equation ( 6 ) from which it came has several
of them,



All the 1{ in { 6 ) have migrated into a singla'ﬁ: the choice

as to which 1{ being at the discretion of the operator ([ chooser )
their partners a, ¢, e, ete migrating at the same time into
the co-migrates ‘@, €, €, .

The composite alpha prototype , as N-'f; in ( 10 ), into
which all the 7? migrate is called a primordial prototype . If
we really want to be realistically symbolic gbout our language
we may sayv that the mind herds the ‘l.rasu':i.l:ms'j;l into the primor-
dial prototype or simply that we gather up the into a single
prototype. Take your pick or still better coin your own express-
ion for the notion.

Cne should realize that the alpha postulate is an elementary
notion. In truth, one may find its half cousin in high school
geometry: a fRgure may be moved from one place to another with-
out changing its shape, nothing being said about the tine re-
quired to make the change etc.

3ince we have arbitrarily chosen ’ﬁ] to remain fixed in the
mental mutation transformetion inteo the primordial probotype it
is obvious that

This last equation means that a did nothing but what his martner
1 did. The #futation Uisgram pinpoints each of them for us,

o pin. point the co-migrates /2 and /D we go to the Mutation

Diagram.

The arrow on the left points in the direection fraom ]ﬂgtn



¥ and the arrew on the right points in the same direction
if we consider the left hand side and right hand sides as pa-
rts of the sammlﬁércle. The direction of the arrows is clock=-
wise, To find ‘%" draw a line equal in magnitude to ¢ on the
same side of ¢ that d is on b and making the angle batweeg;z
and ¢ equal to the angle between b and d. This gives us “c .
This is so sincewe showed that the angle between any two tra-
nsmuites is the same as the angle batwg%p their corresponding
associates. In the same way we find « Draw a line equal
to e in magnitude on the sgme side of e that f is on b and
making the angle betweep ‘& and e equal to the angle between
b and f. This line iz e . From this it appears that none of
the stampeding co-migrates went astray, and it is FOR SURE
that the field of geometry has come to "™ life ™ in truth in
Futation Geometry.

Our Mutation Diagram may have many transmutes in it but
by the scheme above one can always locate the corresponding
co-migrates and thus arrive at a single composite primordial
prototype. Later, for completeness, we shall derive an analy-
tie or synthetic expression for the co-migrates, but who wan-
ts to be tedious when it can be easily done mentally.

1-2 Solution for a Prototype

If by some means we can find an expression for the r
( its magnitude being unity ) in an alpha type product as a.r
we shall have gone a long way in the New Science of Mutation
Geometry. One would,indeed,have to be dull not to see this .

If all the problems of the geometric world are represen-
ted by either the alpha or omaga category and if we can solve
those in the alpha category and our omega proposition reduces
those in the omega category to those in the alpha category then,
at least, in principle we can sgolve the problems of the geomet-
ric world. Given tha t:

E L ] asr = b
Then
[ 2] r = ([ba & ¥ far - »* ) o°*

is a solution to ( 1 ). Here r is specified to be unity. a is
a directed quantity and b is a scalar., ¥ is the iso=-orthogonal
to a. It is equal to a in magnitude and perpendicular to a2 and
pointing in a counterclockwise direction to a. If we put ( 2 )
into ( 1 )} we see that it satisfies. If we square r in ( 2 ) we
get one.



We may further show that ( 2 ) is the only solution to ( 1 ).
To show this suppose that there is an extra term in ( 2 ) .
call it p. We then write for { 2 )1

3 B! 2 ths aBVE=%1% t T

Solving ( 3 ) for p and squaring we get:
- .
L& ] pt (r » (ba & 2} = F 18"}
-3
1-2{ba~rt"a'nrra"-ht}a+l

e L
gealnen -BI &Y

n e @ XD

We thus may use ( 2 } with perfect assurance for we have shown
that it is the only solution. We have proven it only for solut-
ions of the form of ( 2 ). There may be other solutions of a
form different from that given and they may be elegant and have
many beautiful properties but if they exist we are not interest-
ed in them right now. We only need one solution for ( 1 } and
equation ( 2 | 1is it.

We point out here that ( 2 } will play quite a role in tri-
ple in analytic, college, and frojactive gecmatry. We shall try
to show that the New Science of Mutation Geometry is truly a

Pan Geomstry,

It will be expedient hereafter to call our directed quanti=-
ties vectors. They need no special symbols or type for the mode
of operating with them identifies them at once . One thus frees
the equations from a lot of symbolic baggage.



) If r is a vector then 1r, will represent its magnitude and
r a unit vector in the direction of r. T will represent its

iau;&ithagonal. We now write a vector equation that is very
use :

I

(5) r = T

This holds for any vector. For the velocity of a particle we
may write:

(6) v oz gV

The time rate of change of a vector r is written r . We shall
not digress here to exploit the physical possibilities inherent

in ( 5) and ( 6 ) but merely point out in passing that they are
the framework of particle dynamics,

1-3 Equation of a Straight Line

If a is the Eer endicular vector distance from an origin O
to a given straight line and r 4is any vector from O to any
point on this line we may write for its equation:

{ 1) aLr = 8,

See the sketch below.

For a pair of lines we may write:

{ 2 } E.’IrI' e

{3 1 ber be

T



We point out that the equation of a 1ine is an alpha type product.

1-4 Common Point of two Lines

Equations { 2 ) and ( 3 ) of paragraph 1-3 may be written:

{ 1 2 } huacl‘
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{ 2 ) a,bsr = ab,

Subtracting these two equations and cancelling 4 from the resu-
1lting equation we get:

( 3) {ba—%b]-rzﬁ.

This may be written:

(&) B¥® % B
' [}
{5 ) J"L={T.‘aa-akb]'
L I ]
(6 ) A:{bﬂﬁ-%‘ﬁ}

Equation ( 4 ) is an alpha type equation and its solution accor-
ding to ( 2 ) paragraph 1-2 is:

I
{( 7} S I?ﬂb = illf
whencs
(8) ar = pask/hg = 2 asl pE - a:ﬁ ) /A,

i
+H
o
"
¥ 3
P
[



From ( 1}, 1-3 we get:

r 1 i L
{ 9] I;-aufa-r-;'_-ﬂnj'a-b.
How
i
( 10 ) ® 8

Put ( 7 } and { 9 ) dinto { 10 } and we get:

i £L ” [
(11 ) r:-(bﬁ'&"-aﬁh}fa-‘ﬁ

This equation ( 11 ) is a very important one. We point out
here that we shall be able to use it in many ways. In the theory
of the conics, for instance, we shall use it to find the focus,
vertex, and perfolatuw of a parabola from its Cartesian equation.
We shall read more into it as we go and find uses for it.

1=5 Cartesian Axes

Cartesian axes are two perpendicular lines, horisontal and ver-
tical meeting at a point called the origin designated by O, The
horizontal line is called the x axis and the vertical line 1s
called the y axis. See the sketch below.
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We shall be primarily interested in points in the plane of
the axes for the present . We shall designate the unit vectors
along the postive x and y axes by i and j respectively. This is
standard notation., The perpendicular distances from the axes to
a point are called the coordinates of the point. A point is pro-
perly designated by P ( x, vy )« The x coordinate is always
written first by convention. For points in the first gquadrant
both x and y will be pogtive, For points in the second gquadrant
x will be negative and y postive. For points in the third quad-
rant the x will be negative and likewise y. For points in the
fourth quadra nt x will be ive and y negative, The five poi-
mts P(x,y), P(1,2), P(-3,3), P( =2, =3), and
P(2, -2 ) on the sketch are pruparir labeled.

The vector from the origin O to a point P ( x, v } will be
designated by r. It may be written:

(1) ¥ S iyl &8 21 ¢ ¥
Other vectors will be written:

E 23 & 5 @l a al) = ali t a,
¢ 21 B 2 blh,d)=bi ¢ b3
{ &) e = ¢ | <, e )= c i ¢ . J

The b c e are the components of the vectors a, b
Ndautiratys bob® ™

and ¢ r vectors of three dimensions we write:
(5) r = x1 $ vyJ ¢ sk
(6 ) &:a,i-l-ahjfa’k

For n dimensional vectors we write:

¢ T4 r xi ot Rt X, eeeee Xda

i\ 8 ) a al t adl, b ai, seeee adm

il
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Here k is a unit vector along the z axis which is an axis perpen-
dicular to both the x and y axes. For n dimensions the i, are un-
it vectors along the X, orthogonal hyper axes. The i, are unit hy-
per vectors. The a, are hyper components of the vector a in a hy-
per space. In one, two, and three dimensions one may draw a vis-
ual representation. For dimensions higher than three I do not
know how to draw a representation. That we can not will not be a
serious drawback., At this point, for convenience, we should like
to rewrite equations ( 2 }) and ( 3 ) of 1-3 in a slightly diff-
erent form:

£t 53} aer

g
]

{ 10 ) ber n

Here 2 and b are any vectors and m and n are scalars, By
exactly the same scheme of sclution as in the first pair we get
for their solution:

e

( 1@ ) r = wilna = m‘g )/ a* b

1-6 Systems Solution

We start with as simple a system as possible, one for which the student
knows the answer by several different methods,

Example 1

Solve the system.

n

2ZX 4 v
3x -2y

1]
=~

These two equations may be factored into:

&eT

a 25 ¥4 b = 31 = 23, @251 ¥y
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b = 31 -23 = 33 $214 = 21 4 34
aesb s (32 4 $)lR5 ¢ 33) 5 4% 3 =29

According to ( 11 ) of 1=5 r is given by:

me - (L4 £ 23) -5(24 % 33)M7
r 2 (% ¥ 71T 2% 4 13
r = =z x1 ¢ 73

whence X = 2y ry = 1.

In this simple problem we have gone to a lot of pains to
illustrate each point in detail. However, we are not yet done
with it. In solving this problem we were to take note of any

estions that it might give for generalizing the technique
to rge systems,

To begin with we point out that one does not have to, nor
as such should it be done, calculate the guantity a -« in the
denominator of the solution for it is already nearly calculated.
We repeat the original, writ ing down omly the coefficients:

2 % 1

3 =~ Z % &k

Reducing the right stde to zero as in the first case we get the
row vector:

["?+m}r

We now cancel from this row, vector the largest factor possible
7 or = 7, it makes no difference, and we get the row vector

E—I*EJ-

We replace each member in this row by its column cofactor getting:



{2 4 13

On does not change the direction of a vector by dividing it by
a scalar, such as a.b . In this case we choose :

¥ = Z2 A
¥

= 158
Putting these values of x and y into our first equation we get

58 S 5

= =

and our answers are: Vi y = T8 %)
=
In this case, we point out, we did not calculate a+ b .

This is one interpretation of our equation { 11 ) of § 1-5 .
There are many others, One can write the answer mentally. We
now ask the question: Is this columm cofactor taking a gen-
eralization applicable to all systems, large or small, The an-

swer is yes. We next illustrate with a system of three un-
knowns.

Example 2

Selve the system of equations:

1 & B w 2k x - 1
2 1 = 1 Yy B 2
I = X 2 z s 3

We subtract the second from twice the first and the third from

three times the first, reducing the right side to zero, and we
get the two row vectors.

0 3 -1
b 7 -5
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The column cofactors of these two rows from left to right are:
-8 =4 =12

We cancel the lazrgest fgetor from these and we get:
2 1 33

Of course these are the answers sought, all at one time. If one
wants to test them we could call them x= 258 , y = 58,

zZ = 3 s and put these wvalues back into any one of the origi-
nal equations and we get 2 equal to one. s may not always come
out equal to one but in any case the answer will be correct.

We now apply the technigque to a formulation for many vari-
ables. We may write our system symbollically aa:

B, B By By sess X iy
By By Bay Aoy seer Aam| [ Xol A,
. . . . saar Xy - R
(8% Ay Gmg Qmg oves Amy | X 2 n o

This system may be factored into

g, T = 2a,,
dy,* ' S A
. = @ . .

Ei“l' r = Bmg
A symbolic solution for the last set of equations is

- "~ - ~ -~
r = a,a + &, a, % 2, 8y seee 8,8 .

a,hrr [ &1", a,"., 3-1-1 T El.m“}a



'Q,is the vector whose componehts from left to right are
the column cofactors from left to right in the matrix of the
original system with the n th row omitted. It is easy to show

that each of the &, is perpendicular to each of the other
n - 1 vectors similarly formed,

If we stopped here we would defeat our purpose. Instead
we rewrite our last system of equations in the form:

a+ T = am
A»r = O
s o s o @
Re*Tr 2 D

The symbolic solution to this system is the single term

e
F & Ay A

Ay ( ams 8, = 8y a,l

iﬂ in this case is the vector whose components are the colu=-
mn cofactors from left to right of the Cap A matrix in the la-
st system. We also test for s values in a cumgl-x system if
not obvious. We do a system with four variables as an example,

Example 3
Solve the system:
[ 9.« 2 X 4][mx } 3
2 1 - 1 -1 K
-1 0o 2 0ol|=x| |&
- j—l-llxq B

This may be written:

16
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1 - 2 1 ) % 2
wl = 8 5 5 X 0
1l = & L 2 Xq = o
-1 0 1 1 Xy 0

The column cofactors of the last three rows from left to right
are:

- 16, - B, 8, =~ 24
We teke the largest common factor from these and get:
( 2, -1: iz 11 3 :'

which are the answers. They are too cbvious to test for the
8 value,

The small egonation r = 1? is a BLUE RIBBON in sy-
stems solution, for which the illustrativa examples testify.

There are many interpretations that may be given to a
system of equations from the Mutation Viewpeoint. We have gi-
ven one of them here just to show the versatility of the New
Seience of Mutation Geometry. Geometry may not be the proper
word hera.

We have digressed a bit here from the main line of our
Geometriec exposition. We now resume it., We deem it time to
make plausible the contents of the Mutation Propesition whi-
ch i; a propesition of dissolution, splintering products of
the form:

Je T h-.'l."

ghizh are called omega products into a sum of alpha type pro=
ucts,



Before we launch inte the simplicities of the only proposit-
ion in Mutation Geometry we present a list of exercises to
occupy the students in their exciting journey of discovery.
They are to be done strictly from the Mutation Standpoint.

Exercises

Solve the following systems of equations, using the Mutat=-
ion scheme alone.

1 3x + 2y = 5 2 B2 & Fy =
2z ¥ y = 3 3x ¥ 27 =
3 5x + vy = 3 L Lx - 3y =
=2x f by = 1 2x - 5y = =4
5 x + y = 5 6 Sz 3 ¥ = 2
X W W 3x = Ly = =8
7 2 2 =1 |=x; 5| & 2 - 1 X4 -1
2 1 1| (xafj=f 7 1 3 1] [Xa| =
wI =1 Bl §= 2 1 2 X
9 1 -2 21 1xi -3 10 g L | =
2 1 Xl = 6 = x| 2
-1 =1 =1llxsl I-& b = 3 2llx, -1
11 6 2 51 x4 81 12 |1 2 = 2] |x
- 10 (x4 =|= 2 2 0 1! |xel=
-9 6 51 ix, 0 0 3 2! lx, -2
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1-7 Omega Froposition

The first demonstration of the Mutation Proposition will
be for the plane where most of our interest lies, The second
demonstration, for completeness, will be for a hyper-space of
any number of dimensions. See the sketch below for the plane.

w

We first renew our statement of the MUTATION PROPOSITIOR,
a proposition of dissolution, splintering products of the formi
asr ber , called omega products , into a sum of single products
of the form: a+8 , bep, esss called alpha products.

Given any two vectors a and b and any unit vector r we shall
show that:

%X ) asrber = (a*b § asY)/2
{8 ) YIS %% W2 by

Equation ( 2 ) states that gamma is the symmetric of b
with respect to r and in magnitude is equal to b, This is
an equational statement of the PROPOSITION OF MUTATIOH,

The Mutation Diagram YAbr is a consequence of the
Mutation Propoaitinn%r o
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Proof: See Figs 1 - 8 for drawing and lettering., Let AB repre-

sent a and AK b . Let the unit direction r lie along AW. Draw
a line AL equal to AK and making angle KAW equal to angle WAL. Com-
plete the rhombus on AK and AL as KAILW,., Draw BD, BF, and BJ perpen-
dicular to AL, AW, and AK respectively. Draw FE, FI, FH, and FG per-
pendicular te BD, AL, BJ, and AK respectively. N is the common point
to lines AW and KL. I is the common point to lines AW and BJ. It
will now be shown that BF is the bisector of angle EBH, In right
triangles BFV and AVMJ there is a common angle at ) so angle FBM and
MAJ are equal. In right triangles BDR and AFR there is a common angls
at R so angzle RED and RAF are equal. Now angle RAF and MAJ are equal
by construction. Therefore angle RBD and FBE are equal. The following
relations may be written:

(3¢ Jo = HF = FE = DI

o FI = FG

e o A% = AI

{

{ 6 ) AG = AJ 4 JG = AJ ¢ DI
= AJ ¢+ AD - AT

AJ 4 AD - AG

(7 ) 2AC I A 4+ AD

Multiply both sides of equation ( 7 } by AX and we obtain:
(2} 2 AK AG = AE AJ + AK AD

From the similar right triangles AFGC and AVK one has:

(g} AK / AF

AN / AG

( 10 ) AK AG Z AF AW

Put ( 10 ) into { 8 ) and we get the following result:
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{ 23} 2ZAF AN = AKAJ 4+ AX AD
( 12 ) AF = a5+ ¢, AN = ber
£ 3} AKAJ = ae«p

(W) AKX AD = ALAD = a7

E,m__r.l{., equal to AK, equzl to b in magnitude, is represented
Put (12 ), (13 ), and ( 24 ) into ( 11 ) and we get:
{ 15 ) asrber = (a*b 4+ aeY)/2 QED,
Equation fifteen represents the MUTATION PROPOSITION,

This demonstration is for two dimensions. We now show it
for a hyper-space of any number of dimensions. For two or three
dimensions one can draw a representation for it but for a hyper=-
space thisfign:at easy :[LﬂImdn not know how )} to dr:w. gur most
geometry o erest, p geometry, our proposition for the
plana will be aﬁequnt'e. ’

For a hyper=-space, when ¥ is the symmetric of b with respect
to r, we may write:
(16) asrberz(a« (b +7)/(be¥)) (b (D47 b+,

sas (04Y) b (B0 b 4Y)

{g;bt!-!!ig-?h-!!

t . t

T

asbs+sacyY)(b 4 b
: T Rel D™ BaY) L

= (a*b ¢+ a+¥Y)/2 JED

If we had chosen ftohumtrienf a with respect to
r instead of with respect to b our equation would be written

{ 37} aerber = (asbd 4 be¥)/2
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In the first case the mutation diagram will read:
YA br

In the second case it will read:

YA ar

It is at the discretion of the operator intc which entities
he sends the splintered garmas from the dissolution of a num-
ber of omega products. At times it may be convenient to send
or disperse the gammss in various grmpa into various primord-
ial prototypes or mental corral. If I were interested in on-
ly a single gamma I would send them all into a single corral.
Tiay all become one there and I do not have to be confused in
identifying who is who. If I were interested in certain rel-
ations among the gammas I would send them accordingly.For in-
atance, we might have seven omegas to splinter and I wanted to
know a relation betwean three particular gammas, In this case
I would hold the three gammas in their own corrals and herd the

remaining four s into these corrals. It is obvious that
it can be done several ways. Let us suppose that out of the
seven gammas mentioned above we are interested in 1, &,

and 6, As one choice we might send 3 and 5 into 4 and 2 and 7
into 6. Into whatever primordial prototype we may send the var-
ious gammas the MUTATION DIAGRAM will pinpoint the corresponding
co-migrates. In the end we shall have a relation between

gammas 1, 4, and 6,

Conventional mathematics, as far as I know, has no such power.



